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Abstract

Image animation consists of generating a video sequence so that an object in a
source image is animated according to the motion of a driving video. Our frame-
work addresses this problem without using any annotation or prior information
about the specific object to animate. Once trained on a set of videos depicting
objects of the same category (e.g. faces, human bodies), our method can be applied
to any object of this class. To achieve this, we decouple appearance and motion
information using a self-supervised formulation. To support complex motions,
we use a representation consisting of a set of learned keypoints along with their
local affine transformations. A generator network models occlusions arising during
target motions and combines the appearance extracted from the source image and
the motion derived from the driving video. Our framework scores best on diverse
benchmarks and on a variety of object categories. Our source code is publicly
available1.

1 Introduction
Generating videos by animating objects in still images has countless applications across areas of
interest including movie production, photography, and e-commerce. More precisely, image animation
refers to the task of automatically synthesizing videos by combining the appearance extracted from
a source image with motion patterns derived from a driving video. For instance, a face image of a
certain person can be animated following the facial expressions of another individual (see Fig. 1). In
the literature, most methods tackle this problem by assuming strong priors on the object representation
(e.g. 3D model) [4] and resorting to computer graphics techniques [6, 33]. These approaches can
be referred to as object-specific methods, as they assume knowledge about the model of the specific
object to animate.

Recently, deep generative models have emerged as effective techniques for image animation and
video retargeting [2, 41, 3, 42, 27, 28, 37, 40, 31, 21]. In particular, Generative Adversarial Networks
(GANs) [14] and Variational Auto-Encoders (VAEs) [20] have been used to transfer facial expres-
sions [37] or motion patterns [3] between human subjects in videos. Nevertheless, these approaches
usually rely on pre-trained models in order to extract object-specific representations such as keypoint
locations. Unfortunately, these pre-trained models are built using costly ground-truth data annotations
[2, 27, 31] and are not available in general for an arbitrary object category. To address this issues,
recently Siarohin et al. [28] introduced Monkey-Net, the first object-agnostic deep model for image

1https://github.com/AliaksandrSiarohin/first-order-model
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Figure 1: Example animations produced by our method trained on different datasets: VoxCeleb [22]
(top left), Tai-Chi-HD (top right), Fashion-Videos [41] (bottom left) and MGif [28] (bottom right).
We use relative motion transfer for VoxCeleb and Fashion-Videos and absolute transfer for MGif and
Tai-Chi-HD see Sec. 3.4. Check our project page for more qualitative results2.

animation. Monkey-Net encodes motion information via keypoints learned in a self-supervised fash-
ion. At test time, the source image is animated according to the corresponding keypoint trajectories
estimated in the driving video. The major weakness of Monkey-Net is that it poorly models object
appearance transformations in the keypoint neighborhoods assuming a zeroth order model (as we
show in Sec. 3.1). This leads to poor generation quality in the case of large object pose changes
(see Fig. 4). To tackle this issue, we propose to use a set of self-learned keypoints together with
local affine transformations to model complex motions. We therefore call our method a first-order
motion model. Second, we introduce an occlusion-aware generator, which adopts an occlusion mask
automatically estimated to indicate object parts that are not visible in the source image and that
should be inferred from the context. This is especially needed when the driving video contains large
motion patterns and occlusions are typical. Third, we extend the equivariance loss commonly used
for keypoints detector training [18, 44], to improve the estimation of local affine transformations.
Fourth, we experimentally show that our method significantly outperforms state-of-the-art image
animation methods and can handle high-resolution datasets where other approaches generally fail.
Finally, we release a new high resolution dataset, Thai-Chi-HD, which we believe could become a
reference benchmark for evaluating frameworks for image animation and video generation.

2 Related work
Video Generation. Earlier works on deep video generation discussed how spatio-temporal neural
networks could render video frames from noise vectors [36, 26]. More recently, several approaches
tackled the problem of conditional video generation. For instance, Wang et al. [38] combine a
recurrent neural network with a VAE in order to generate face videos. Considering a wider range
of applications, Tulyakov et al. [34] introduced MoCoGAN, a recurrent architecture adversarially
trained in order to synthesize videos from noise, categorical labels or static images. Another typical
case of conditional generation is the problem of future frame prediction, in which the generated video
is conditioned on the initial frame [12, 23, 30, 35, 44]. Note that in this task, realistic predictions can
be obtained by simply warping the initial video frame [1, 12, 35]. Our approach is closely related

2https://aliaksandrsiarohin.github.io/first-order-model-website/
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Figure 2: Overview of our approach. Our method assumes a source image S and a frame of a
driving video frame D as inputs. The unsupervised keypoint detector extracts first order motion
representation consisting of sparse keypoints and local affine transformations with respect to the
reference frame R. The dense motion network uses the motion representation to generate dense
optical flow T̂S←D from D to S and occlusion map ÔS←D. The source image and the outputs of the
dense motion network are used by the generator to render the target image.

to these previous works since we use a warping formulation to generate video sequences. However,
in the case of image animation, the applied spatial deformations are not predicted but given by the
driving video.

Image Animation. Traditional approaches for image animation and video re-targeting [6, 33,
13] were designed for specific domains such as faces [45, 42], human silhouettes [8, 37, 27] or
gestures [31] and required a strong prior of the animated object. For example, in face animation,
method of Zollhofer et al. [45] produced realistic results at expense of relying on a 3D morphable
model of the face. In many applications, however, such models are not available. Image animation
can also be treated as a translation problem from one visual domain to another. For instance, Wang
et al. [37] transferred human motion using the image-to-image translation framework of Isola et
al. [16]. Similarly, Bansal et al. [3] extended conditional GANs by incorporating spatio-temporal
cues in order to improve video translation between two given domains. Such approaches in order to
animate a single person require hours of videos of that person labelled with semantic information,
and therefore have to be retrained for each individual. In contrast to these works, we neither rely on
labels, prior information about the animated objects, nor on specific training procedures for each
object instance. Furthermore, our approach can be applied to any object within the same category
(e.g., faces, human bodies, robot arms etc).

Several approaches were proposed that do not require priors about the object. X2Face [40] uses
a dense motion field in order to generate the output video via image warping. Similarly to us
they employ a reference pose that is used to obtain a canonical representation of the object. In our
formulation, we do not require an explicit reference pose, leading to significantly simpler optimization
and improved image quality. Siarohin et al. [28] introduced Monkey-Net, a self-supervised framework
for animating arbitrary objects by using sparse keypoint trajectories. In this work, we also employ
sparse trajectories induced by self-supervised keypoints. However, we model object motion in the
neighbourhood of each predicted keypoint by a local affine transformation. Additionally, we explicitly
model occlusions in order to indicate to the generator network the image regions that can be generated
by warping the source image and the occluded areas that need to be inpainted.

3 Method
We are interested in animating an object depicted in a source image S based on the motion of a similar
object in a driving video D. Since direct supervision is not available (pairs of videos in which objects
move similarly), we follow a self-supervised strategy inspired from Monkey-Net [28]. For training,
we employ a large collection of video sequences containing objects of the same object category. Our
model is trained to reconstruct the training videos by combining a single frame and a learned latent
representation of the motion in the video. Observing frame pairs, each extracted from the same video,
it learns to encode motion as a combination of motion-specific keypoint displacements and local
affine transformations. At test time we apply our model to pairs composed of the source image and of
each frame of the driving video and perform image animation of the source object.
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An overview of our approach is presented in Fig. 2. Our framework is composed of two main
modules: the motion estimation module and the image generation module. The purpose of the motion
estimation module is to predict a dense motion field from a frame D ∈ R3×H×W of dimension
H ×W of the driving video D to the source frame S ∈ R3×H×W . The dense motion field is later
used to align the feature maps computed from S with the object pose in D. The motion field is
modeled by a function TS←D : R2 → R2 that maps each pixel location in D with its corresponding
location in S. TS←D is often referred to as backward optical flow. We employ backward optical flow,
rather than forward optical flow, since back-warping can be implemented efficiently in a differentiable
manner using bilinear sampling [17]. We assume there exists an abstract reference frame R. We
independently estimate two transformations: from R to S (TS←R) and from R to D (TD←R). Note
that unlike X2Face [40] the reference frame is an abstract concept that cancels out in our derivations
later. Therefore it is never explicitly computed and cannot be visualized. This choice allows us to
independently process D and S. This is desired since, at test time the model receives pairs of the
source image and driving frames sampled from a different video, which can be very different visually.
Instead of directly predicting TD←R and TS←R, the motion estimator module proceeds in two steps.

In the first step, we approximate both transformations from sets of sparse trajectories, obtained by
using keypoints learned in a self-supervised way. The locations of the keypoints in D and S are
separately predicted by an encoder-decoder network. The keypoint representation acts as a bottleneck
resulting in a compact motion representation. As shown by Siarohin et al. [28], such sparse motion
representation is well-suited for animation as at test time, the keypoints of the source image can be
moved using the keypoints trajectories in the driving video. We model motion in the neighbourhood
of each keypoint using local affine transformations. Compared to using keypoint displacements only,
the local affine transformations allow us to model a larger family of transformations. We use Taylor
expansion to represent TD←R by a set of keypoint locations and affine transformations. To this end,
the keypoint detector network outputs keypoint locations as well as the parameters of each affine
transformation.

During the second step, a dense motion network combines the local approximations to obtain the
resulting dense motion field T̂S←D. Furthermore, in addition to the dense motion field, this network
outputs an occlusion mask ÔS←D that indicates which image parts of D can be reconstructed by
warping of the source image and which parts should be inpainted, i.e.inferred from the context.

Finally, the generation module renders an image of the source object moving as provided in the
driving video. Here, we use a generator network G that warps the source image according to T̂S←D

and inpaints the image parts that are occluded in the source image. In the following sections we detail
each of these step and the training procedure.

3.1 Local Affine Transformations for Approximate Motion Description

The motion estimation module estimates the backward optical flow TS←D from a driving frame D to
the source frame S. As discussed above, we propose to approximate TS←D by its first order Taylor
expansion in a neighborhood of the keypoint locations. In the rest of this section, we describe the
motivation behind this choice, and detail the proposed approximation of TS←D.

We assume there exist an abstract reference frame R. Therefore, estimating TS←D consists in
estimating TS←R and TR←D. Furthermore, given a frame X, we estimate each transformation
TX←R in the neighbourhood of the learned keypoints. Formally, given a transformation TX←R, we
consider its first order Taylor expansions in K keypoints p1, . . . pK . Here, p1, . . . pK denote the
coordinates of the keypoints in the reference frame R. Note that for the sake of simplicity in the
following the point locations in the reference pose space are all denoted by p while the point locations
in the X, S or D pose spaces are denoted by z. We obtain:

TX←R(p) = TX←R(pk) +

(
d

dp
TX←R(p)

∣∣∣∣p=pk

)
(p− pk) + o(‖p− pk‖), (1)

In this formulation, the motion function TX←R is represented by its values in each keypoint pk and
its Jacobians computed in each pk location:

TX←R(p) '
{{
TX←R(p1),

d

dp
TX←R(p)

∣∣∣∣p=p1

}
, . . .

{
TX←R(pk),

d

dp
TX←R(p)

∣∣∣∣p=pK

}}
. (2)
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Furthermore, in order to estimate TR←X = T −1X←R, we assume that TX←R is locally bijective in the
neighbourhood of each keypoint. We need to estimate TS←D near the keypoint zk in D, given that
zk is the pixel location corresponding to the keypoint location pk in R. To do so, we first estimate
the transformation TR←D near the point zk in the driving frame D, e.g. pk = TR←D(zk). Then we
estimate the transformation TS←R near pk in the reference R. Finally TS←D is obtained as follows:

TS←D = TS←R ◦ TR←D = TS←R ◦ T −1D←R, (3)

After computing again the first order Taylor expansion of Eq. (3) (see Sup. Mat.), we obtain:

TS←D(z) ≈ TS←R(pk) + Jk(z − TD←R(pk)) (4)

with:

Jk =

(
d

dp
TS←R(p)

∣∣∣∣p=pk

)(
d

dp
TD←R(p)

∣∣∣∣p=pk

)−1
(5)

In practice, TS←R(pk) and TD←R(pk) in Eq. (4) are predicted by the keypoint predictor. More
precisely, we employ the standard U-Net architecture that estimates K heatmaps, one for each
keypoint. The last layer of the decoder uses softmax activations in order to predict heatmaps that can
be interpreted as keypoint detection confidence map. Each expected keypoint location is estimated
using the average operation as in [28, 24]. Note if we set Jk = 1 (1 is 2 × 2 identity matrix), we
get the motion model of Monkey-Net. Therefore Monkey-Net uses a zeroth-order approximation of
TS←D(z)− z.

For both frames S and D, the keypoint predictor network also outputs four additional channels for
each keypoint. From these channels, we obtain the coefficients of the matrices d

dpTS←R(p)|p=pk
and

d
dpTS←R(p)|p=pk

in Eq. (5) by computing spatial weighted average using as weights the correspond-
ing keypoint confidence map.

Combining Local Motions. We employ a convolutional network P to estimate T̂S←D from the set
of Taylor approximations of TS←D(z) in the keypoints and the original source frame S. Importantly,
since T̂S←D maps each pixel location in D with its corresponding location in S, the local patterns in
T̂S←D, such as edges or texture, are pixel-to-pixel aligned with D but not with S. This misalignment
issue makes the task harder for the network to predict T̂S←D from S. In order to provide inputs
already roughly aligned with T̂S←D, we warp the source frame S according to local transformations
estimated in Eq. (4). Thus, we obtain K transformed images S1, . . .SK that are each aligned with
T̂S←D in the neighbourhood of a keypoint. Importantly, we also consider an additional image S0 = S
for the background.

For each keypoint pk we additionally compute heatmaps Hk indicating to the dense motion network
where each transformation happens. Each Hk(z) is implemented as the difference of two heatmaps
centered in TD←R(pk) and TS←R(pk):

Hk(z) = exp

(
(TD←R(pk)− z)2

σ

)
− exp

(
(TS←R(pk)− z)2

σ

)
. (6)

In all our experiments, we employ σ = 0.01 following Jakab et al. [18].

The heatmaps Hk and the transformed images S0, . . .SK are concatenated and processed by a U-
Net [25]. T̂S←D is estimated using a part-based model inspired by Monkey-Net [28]. We assume that
an object is composed of K rigid parts and that each part is moved according to Eq. (4). Therefore
we estimate K+1 masks Mk, k = 0, . . .K that indicate where each local transformation holds. The
final dense motion prediction T̂S←D(z) is given by:

T̂S←D(z) = M0z +

K∑
k=1

Mk (TS←R(pk) + Jk(z − TD←R(pk))) (7)

Note that, the term M0z is considered in order to model non-moving parts such as background.
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3.2 Occlusion-aware Image Generation

As mentioned in Sec.3, the source image S is not pixel-to-pixel aligned with the image to be generated
D̂. In order to handle this misalignment, we use a feature warping strategy similar to [29, 28, 15].
More precisely, after two down-sampling convolutional blocks, we obtain a feature map ξ ∈ RH′×W ′

of dimension H ′ ×W ′. We then warp ξ according to T̂S←D. In the presence of occlusions in S,
optical flow may not be sufficient to generate D̂. Indeed, the occluded parts in S cannot be recovered
by image-warping and thus should be inpainted. Consequently, we introduce an occlusion map
ÔS←D ∈ [0, 1]H

′×W ′ to mask out the feature map regions that should be inpainted. Thus, the
occlusion mask diminishes the impact of the features corresponding to the occluded parts. The
transformed feature map is written as:

ξ′ = ÔS←D � fw(ξ, T̂S←D) (8)

where fw(·, ·) denotes the back-warping operation and� denotes the Hadamard product. We estimate
the occlusion mask from our sparse keypoint representation, by adding a channel to the final layer
of the dense motion network. Finally, the transformed feature map ξ′ is fed to subsequent network
layers of the generation module (see Sup. Mat.) to render the sought image.

3.3 Training Losses

We train our system in an end-to-end fashion combining several losses. First, we use the reconstruction
loss based on the perceptual loss of Johnson et al. [19] using the pre-trained VGG-19 network as our
main driving loss. The loss is based on implementation of Wang et al. [37]. With the input driving
frame D and the corresponding reconstructed frame D̂, the reconstruction loss is written as:

Lrec(D̂,D) =

I∑
i=1

∣∣∣Ni(D̂)−Ni(D)
∣∣∣ , (9)

where Ni(·) is the ith channel feature extracted from a specific VGG-19 layer and I is the number of
feature channels in this layer. Additionally we propose to use this loss on a number of resolutions,
forming a pyramid obtained by down-sampling D̂ and D, similarly to MS-SSIM [39, 32]. The
resolutions are 256× 256, 128× 128, 64× 64 and 32× 32. There are 20 loss terms in total.

Imposing Equivariance Constraint. Our keypoint predictor does not require any keypoint anno-
tations during training. This may lead to unstable performance. Equivariance constraint is one of
the most important factors driving the discovery of unsupervised keypoints [18, 43]. It forces the
model to predict consistent keypoints with respect to known geometric transformations. We use thin
plate splines deformations as they were previously used in unsupervised keypoint detection [18, 43]
and are similar to natural image deformations. Since our motion estimator does not only predict the
keypoints, but also the Jacobians, we extend the well-known equivariance loss to additionally include
constraints on the Jacobians.

We assume that an image X undergoes a known spatial deformation TX←Y. In this case TX←Y can
be an affine transformation or a thin plane spline deformation. After this deformation we obtain a
new image Y. Now by applying our extended motion estimator to both images, we obtain a set of
local approximations for TX←R and TY←R. The standard equivariance constraint writes as:

TX←R ≡ TX←Y ◦ TY←R (10)

After computing the first order Taylor expansions of both sides, we obtain the following constraints
(see derivation details in Sup. Mat.):

TX←R(pk) ≡ TX←Y ◦ TY←R(pk), (11)

(
d

dp
TX←R(p)

∣∣∣∣p=pk

)
≡
(
d

dp
TX←Y(p)

∣∣∣∣p=TY←R(pk)

)(
d

dp
TY←R(p)

∣∣∣∣p=pk

)
, (12)

Note that the constraint Eq. (11) is strictly the same as the standard equivariance constraint for the
keypoints [18, 43]. During training, we constrain every keypoint location using a simple L1 loss
between the two sides of Eq. (11). However, implementing the second constraint from Eq. (12) with
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L1 would force the magnitude of the Jacobians to zero and would lead to numerical problems. To
this end, we reformulate this constraint in the following way:

1 ≡
(
d

dp
TX←R(p)

∣∣∣∣p=pk

)−1(
d

dp
TX←Y(p)

∣∣∣∣p=TY←R(pk)

)(
d

dp
TY←R(p)

∣∣∣∣p=pk

)
, (13)

where 1 is 2 × 2 identity matrix. Then, L1 loss is employed similarly to the keypoint location
constraint. Finally, in our preliminary experiments, we observed that our model shows low sensitivity
to the relative weights of the reconstruction and the two equivariance losses. Therefore, we use equal
loss weights in all our experiments.

3.4 Testing Stage: Relative Motion Transfer

At this stage our goal is to animate an object in a source frame S1 using the driving video D1, . . .DT .
Each frame Dt is independently processed to obtain St. Rather than transferring the motion encoded
in TS1←Dt

(pk) to S, we transfer the relative motion between D1 and Dt to S1. In other words, we
apply a transformation TDt←D1

(p) to the neighbourhood of each keypoint pk:

TS1←St
(z) ≈ TS1←R(pk) + Jk(z − TS←R(pk) + TD1←R(pk)− TDt←R(pk)) (14)

with

Jk =

(
d

dp
TD1←R(p)

∣∣∣∣p=pk

)(
d

dp
TDt←R(p)

∣∣∣∣p=pk

)−1
(15)

Detailed mathematical derivations are provided in Sup. Mat.. Intuitively, we transform the neigh-
bourhood of each keypoint pk in S1 according to its local deformation in the driving video. Indeed,
transferring relative motion over absolute coordinates allows to transfer only relevant motion patterns,
while preserving global object geometry. Conversely, when transferring absolute coordinates, as in
X2Face [40], the generated frame inherits the object proportions of the driving video. It’s important
to note that one limitation of transferring relative motion is that we need to assume that the objects
in S1 and D1 have similar poses (see [28]). Without initial rough alignment, Eq. (14) may lead to
absolute keypoint locations physically impossible for the object of interest.

4 Experiments
Datasets. We train and test our method on four different datasets containing various objects. Our
model is capable of rendering videos of much higher resolution compared to [28] in all our experi-
ments.

• The VoxCeleb dataset [22] is a face dataset of 22496 videos, extracted from YouTube videos. For
pre-processing, we extract an initial bounding box in the first video frame. We track this face until
it is too far away from the initial position. Then, we crop the video frames using the smallest crop
containing all the bounding boxes. The process is repeated until the end of the sequence. We filter
out sequences that have resolution lower than 256 × 256 and the remaining videos are resized to
256× 256 preserving the aspect ratio. It’s important to note that compared to X2Face [40], we obtain
more natural videos where faces move freely within the bounding box. Overall, we obtain 12331
training videos and 444 test videos, with lengths varying from 64 to 1024 frames.
• The UvA-Nemo dataset [9] is a facial analysis dataset that consists of 1240 videos. We apply the
exact same pre-processing as for VoxCeleb. Each video starts with a neutral expression. Similar to
Wang et al. [38], we use 1116 videos for training and 124 for evaluation.
• The BAIR robot pushing dataset [10] contains videos collected by a Sawyer robotic arm pushing
diverse objects over a table. It consists of 42880 training and 128 test videos. Each video is 30 frame
long and has a 256× 256 resolution.
• Following Tulyakov et al. [34], we collected 280 tai-chi videos from YouTube. We use 252 videos
for training and 28 for testing. Each video is split in short clips as described in pre-processing of
VoxCeleb dataset. We retain only high quality videos and resized all the clips to 256 × 256 pixels
(instead of 64× 64 pixels in [34]). Finally, we obtain 3049 and 285 video chunks for training and
testing respectively with video length varying from 128 to 1024 frames. This dataset is referred to as
the Tai-Chi-HD dataset. The dataset will be made publicly available.

Evaluation Protocol. Evaluating the quality of image animation is not obvious, since ground truth
animations are not available. We follow the evaluation protocol of Monkey-Net [28]. First, we
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Table 1: Quantitative ablation study for video
reconstruction on Tai-Chi-HD.

Tai-Chi-HD
L1 (AKD, MKR) AED

Baseline 0.073 (8.945, 0.099) 0.235
Pyr. 0.069 (9.407, 0.065) 0.213

Pyr.+OS←D 0.069 (8.773, 0.050) 0.205
Jac. w/o Eq. (12) 0.073 (9.887, 0.052) 0.220

Full 0.063 (6.862, 0.036) 0.179

Table 2: Paired user study: user preferences
in favour of our approach.

X2Face [40] Monkey-Net [28]

Tai-Chi-HD 92.0% 80.6%
VoxCeleb 95.8% 68.4%

Nemo 79.8% 60.6%
Bair 95.0% 67.0%

Input D

Baseline

Pyr.

Pyr.+OS←D

Jac. w/o
Eq. (12)

Full

Figure 3: Qualitative ablation on Tai-Chi-HD.

quantitatively evaluate each method on the "proxy" task of video reconstruction. This task consists of
reconstructing the input video from a representation in which appearance and motion are decoupled.
In our case, we reconstruct the input video by combining the sparse motion representation in (2) of
each frame and the first video frame. Second, we evaluate our model on image animation according
to a user-study. In all experiments we use K=10 as in [28]. Other implementation details are given in
Sup. Mat.

Metrics. To evaluate video reconstruction, we adopt the metrics proposed in Monkey-Net [28]:

• L1. We report the average L1 distance between the generated and the ground-truth videos.
• Average Keypoint Distance (AKD). For the Tai-Chi-HD, VoxCeleb and Nemo datasets, we use
3rd-party pre-trained keypoint detectors in order to evaluate whether the motion of the input video
is preserved. For the VoxCeleb and Nemo datasets we use the facial landmark detector of Bulat et
al. [5]. For the Tai-Chi-HD dataset, we employ the human-pose estimator of Cao et al. [7]. These
keypoints are independently computed for each frame. AKD is obtained by computing the average
distance between the detected keypoints of the ground truth and of the generated video.
• Missing Keypoint Rate (MKR). In the case of Tai-Chi-HD, the human-pose estimator returns an
additional binary label for each keypoint indicating whether or not the keypoints were successfully
detected. Therefore, we also report the MKR defined as the percentage of keypoints that are detected
in the ground truth frame but not in the generated one. This metric assesses the appearance quality of
each generated frame.
• Average Euclidean Distance (AED). Considering an externally trained image representation, we
report the average euclidean distance between the ground truth and generated frame representation,
similarly to Esser et al. [11]. We employ the feature embedding used in Monkey-Net [28].

Ablation Study. We compare the following variants of our model. Baseline: the simplest model
trained without using the occlusion mask (OS←D=1 in Eq. (8)), jacobians (Jk = 1 in Eq. (4)) and
is supervised with Lrec at the highest resolution only; Pyr.: the pyramid loss is added to Baseline;
Pyr.+OS←D: with respect to Pyr., we replace the generator network with the occlusion-aware network;
Jac. w/o Eq. (12) our model with local affine transformations but without equivariance constraints on
jacobians Eq. (12); Full: the full model including local affine transformations described in Sec. 3.1.

In Fig. 3, we report the qualitative ablation. First, the pyramid loss leads to better results according
to all the metrics except AKD. Second, adding OS←D to the model consistently improves all the
metrics with respect to Pyr.. This illustrates the benefit of explicitly modeling occlusions. We found
that without equivariance constraint over the jacobians, Jk becomes unstable which leads to poor
motion estimations. Finally, our Full model further improves all the metrics. In particular, we note
that, with respect to the Baseline model, the MKR of the full model is smaller by the factor of 2.75.
It shows that our rich motion representation helps generate more realistic images. These results are
confirmed by our qualitative evaluation in Tab. 1 where we compare the Baseline and the Full models.
In these experiments, each frame D of the input video is reconstructed from its first frame (first
column) and the estimated keypoint trajectories. We note that the Baseline model does not locate any
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Table 3: Video reconstruction: comparison with the state of the art on four different datasets.
Tai-Chi-HD VoxCeleb Nemo Bair

L1 (AKD, MKR) AED L1 AKD AED L1 AKD AED L1

X2Face [40] 0.080 (17.654, 0.109) 0.272 0.078 7.687 0.405 0.031 3.539 0.221 0.065
Monkey-Net [28] 0.077 (10.798, 0.059) 0.228 0.049 1.878 0.199 0.018 1.285 0.077 0.034

Ours 0.063 (6.862, 0.036) 0.179 0.043 1.294 0.140 0.016 1.119 0.048 0.027

image
Source

Driving
video

X2Face [40]

Monkey-
Net [28]

Ours

image
Source

Driving
video

Figure 4: Qualitative comparison with state of the art for the task of image animation on two
sequences and two source images from the Tai-Chi-HD dataset.

keypoints in the arms area. Consequently, when the pose difference with the initial pose increases,
the model cannot reconstruct the video (columns 3,4 and 5). In contrast, the Full model learns to
detect a keypoint on each arm, and therefore, to more accurately reconstruct the input video even in
the case of complex motion.

Comparison with State of the Art. We now compare our method with state of the art for the video
reconstruction task as in [28]. To the best of our knowledge, X2Face [40] and Monkey-Net [28] are
the only previous approaches for model-free image animation. Quantitative results are reported in
Tab. 3. We observe that our approach consistently improves every single metric for each of the four
different datasets. Even on the two face datasets, VoxCeleb and Nemo datasets, our approach clearly
outperforms X2Face that was originally proposed for face generation. The better performance of our
approach compared to X2Face is especially impressive X2Face exploits a larger motion embedding
(128 floats) than our approach (60=K*(2+4) floats). Compared to Monkey-Net that uses a motion
representation with a similar dimension (50=K*(2+3)), the advantages of our approach are clearly
visible on the Tai-Chi-HD dataset that contains highly non-rigid objects (i.e.human body).

We now report a qualitative comparison for image animation. Generated sequences are reported in
Fig. 4. The results are well in line with the quantitative evaluation in Tab. 3. Indeed, in both examples,
X2Face and Monkey-Net are not able to correctly transfer the body notion in the driving video,
instead warping the human body in the source image as a blob. Conversely, our approach is able
to generate significantly better looking videos in which each body part is independently animated.
This qualitative evaluation illustrates the potential of our rich motion description. We complete our
evaluation with a user study. We ask users to select the most realistic image animation. Each question
consists of the source image, the driving video, and the corresponding results of our method and a
competitive method. We require each question to be answered by 10 AMT worker. This evaluation
is repeated on 50 different input pairs. Results are reported in Tab. 2. We observe that our method
is clearly preferred over the competitor methods. Interestingly, the largest difference with the state
of the art is obtained on Tai-Chi-HD: the most challenging dataset in our evaluation due to its rich
motions.

5 Conclusions
We presented a novel approach for image animation based on keypoints and local affine transforma-
tions. Our novel mathematical formulation describes the motion field between two frames and is
efficiently computed by deriving a first order Taylor expansion approximation. In this way, motion is
described as a set of keypoints displacements and local affine transformations. A generator network
combines the appearance of the source image and the motion representation of the driving video. In
addition, we proposed to explicitly model occlusions in order to indicate to the generator network
which image parts should be inpainted. We evaluated the proposed method both quantitatively and
qualitatively and showed that our approach clearly outperforms state of the art on all the benchmarks.
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