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Abstract

In a series of papers [17, 22, 16], it was established that some of the most commonly
used first order methods almost surely (under random initializations) and with step-
size being small enough, avoid strict saddle points, as long as the objective function
f isC2 and has Lipschitz gradient. The key observation was that first order methods
can be studied from a dynamical systems perspective, in which instantiations of
Center-Stable manifold theorem allow for a global analysis. The results of the
aforementioned papers were limited to the case where the step-size α is constant,
i.e., does not depend on time (and bounded from the inverse of the Lipschitz
constant of the gradient of f ). It remains an open question whether or not the
results still hold when the step-size is time dependent and vanishes with time.
In this paper, we resolve this question on the affirmative for gradient descent, mirror
descent, manifold descent and proximal point. The main technical challenge is
that the induced (from each first order method) dynamical system is time non-
homogeneous and the stable manifold theorem is not applicable in its classic form.
By exploiting the dynamical systems structure of the aforementioned first order
methods, we are able to prove a stable manifold theorem that is applicable to
time non-homogeneous dynamical systems and generalize the results in [16] for
vanishing step-sizes.

1 Introduction

Non-convex optimization has been studied extensively the last years and has been one of the main
focuses of Machine Learning community. The reason behind the interest of ML community is that in
many applications of interest, one has to deal with the optimization of a non-convex landscape. One
of the key obstacles of non-convex optimization is the existence of numerous saddle points (which
can outnumber the local minima [10, 24, 6]). Avoiding them is a fundamental challenge for ML [14].

Recent progress [11, 16] has shown that under mild regularity assumptions on the objective function,
first-order methods such as gradient descent can provably avoid the so-called strict saddle points1.

1These are saddle points where the Hessian of the objective admits at least one direction of negative curvature.
Such property has been shown to hold in a wide range of objective functions, see [11, 29, 28, 13, 12, 3] and
references therein.
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In particular, a unified theoretical framework is established in [16] to analyze the asymptotic behavior
of first-order optimization algorithms such as gradient descent, mirror descent, proximal point, coor-
dinate descent and manifold descent. It is shown that under random initialization, the aforementioned
methods avoid strict saddle points almost surely. The proof exploits a powerful theorem from the
dynamical systems literature, the so-called Stable-manifold theorem (see supplementary material for
a statement of this theorem). For example, given a C2 (twice continuously differentiable function) f
with L-Lipschitz gradient, gradient descent method

xk+1 = g(xk) := xk − α∇f(xk)

avoids strict saddle points almost surely, under the assumption that the stepsize is constant and
0 < α < 1

L . The crux of the proof in [16] is the Stable-manifold theorem for the time-homogeneous2

dynamical system xk+1 = g(xk). The Stable-manifold theorem implies that the dynamical system
g avoids its unstable fixed points and with the fact that the unstable fixed points of the dynamical
system g coincide with the strict saddles of f the claim follows. Results of similar flavor can be
shown for Expectation Maximization algorithm [19], Multiplicative Weights Update [18, 23] and for
min-max optimization [9].

In many applications/algorithms, however, the stepsize is adaptive or vanishing/diminishing (meaning
limk αk = 0, e.g., αk = 1

k or 1√
k

). Such applications include stochastic gradient descent (see
[27] for analysis of SGD for convex functions), urn models and stochastic approximation [25],
gradient descent [4], online learning algorithms like multiplicative weights update [1, 15] (which
is an instantiation of Mirror Descent with entropic regularizer). It is also important to note that the
choice of the stepsize is really crucial in the aforementioned applications as changing the stepsize can
change the convergence properties (transition from convergence to oscillations/chaos [20, 21, 8, 5]),
the rate of convergence [20] as well as the system efficiency [7].

The proof in [16] does not carry over when the stepsize depends on time, because the Stable-manifold
theorem is not applicable. Hence, whether the results of [16] hold for vanishing step-sizes remains
unresovled. This was stated explicitly as an open question in [16]. Our work resolves this question in
the affirmative. Our main result is stated below informally.

Theorem 1.1 (Informal). Gradient Descent, Mirror Descent, Proximal point and Manifold descent,
with vanishing step-size αk of order Ω

(
1
k

)
avoid the set of strict saddle points (isolated and non-

isolated) almost surely under random initialization.

Organization of the paper. The paper is organized as follows: In Section 2 we give important
definitions for the rest of the paper, in Section 3 we provide intuition and technical overview of
our results, in Section 4 we show a new Stable-manifold theorem that is applicable to a class of
time non-homogeneous dynamical systems and finally in Section 5 we show how this new manifold
theorem can be applied to Gradient descent, Mirror Descent, Proximal point and Manifold Descent.
Due to space constraints, most of the proofs can be found in the supplementary material.

Notation. Throughout this paper, we denote N the set of nonnegative integers and R the set of
real numbers, ‖·‖ the Euclidean norm, bolded x the vector, B(x, δ) the open ball centering at x
with radius δ, g(k,x) the update rule for optimization algorithms indexed by k ∈ N, g̃(m,n,x) the
composition g(m, ..., g(n+ 1, g(n,x))...) for m ≥ n,∇f the gradient of f : Rd → R and∇2f(x)
the Hessian of f at x, Dxg(k,x) the differential with respect to variable x,

2 Preliminaries

In this section we provide all necessary definitions that will be needed for the rest of the paper.

Definition 2.1 (Time (non)-homogeneous). We call a dynamical system xk+1 = g(xk) as time
homogeneous since g does not on step k. Furthermore, we call a dynamical system xk+1 = g(k, xk)
time non-homogeneous as g depends on k.

Definition 2.2 (Critical point). Given a C2 (twice continuously differentiable) function f : X→ R
where X is an open, convex subset of Rd, the following definitions are provided for completeness.

2This means that g does not depend on time. In the dynamical systems/differential equations literature such
systems are called "autonomous" whereas time-dependent systems are called "non-autonomous".
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1. A point x∗ is a critical point of f if∇f(x∗) = 0.

2. A critical point is a local minimum if there is a neighborhood U around x∗ such that
f(x∗) ≤ f(x) for all x ∈ U , and a local maximum if f(x∗) ≥ f(x).

3. A critical point is a saddle point if for all neighborhoods U around x∗, there are x,y ∈ U
such that f(x) ≤ f(x∗) ≤ f(y).

4. A critical point x∗ is isolated if there is a neighborhood U around x∗, and x∗ is the only
critical point in U .

This paper will focus on saddle points that have directions of strictly negative curvature, that is the
concept of strict saddle.

Definition 2.3 (Strict Saddle). A critical point x∗ of f is a strict saddle if λmin(∇2f(x∗)) < 0
(minimum eigenvalue of the Hessian computed at the critical point is negative).

Let X ∗ be the set of strict saddle points of function f and we follow the Definition 2 of [16] for the
global stable set of X ∗.
Definition 2.4 (Global Stable Set and fixed points). Given a dynamical system (e.g., gradient descent
xk+1 = xk − αk∇f(xk))

xk+1 = g(k,xk), (1)

the global stable set W s(X ∗) of X ∗ is the set of initial conditions where the sequence xk converges
to a strict saddle. This is defined as:

W s(X ∗) = {x0 : lim
k→∞

xk ∈ X ∗}.

Moreover, z is called a fixed point of the system (1) if z = g(k, z) for all natural numbers k.

Definition 2.5 (Manifold). A Ck-differentiable, d-dimensional manifold is a topological space M ,
together with a collection of charts {(Uα, φα)}, where each φα is a Ck-diffeomorphism from an
open subset Uα ⊂ M to Rd. The charts are compatible in the sense that, whenever Uα ∩ Uβ 6= ∅,
the transition map φα ◦ φ−1β : φβ(Uβ ∩ Uα)→ Rd is of Ck.

3 Intuition and Overview

In this section we will illustrate why gradient descent and related first-order methods do not converge
to saddle points, even for time varying/vanishing step-sizes αk of order Ω

(
1
k

)
.

3.1 Intuition

Consider the case of a quadratic, f(x) = 1
2x

TAx where A = diag(λ1, ..., λd) is a d × d, non-
singular, diagonal matrix with at least a negative eigenvalue. Let λ1, ..., λj be the positive eigenvalues
of A (the first j) and λj+1, ..., λd be the non-positive ones. It is clear that x∗ = 0 is the unique
critical point of function f and the Hessian ∇2f is A everywhere (and hence at the critical point).
Moreover, it is clear that x∗ is a strict saddle point (not a local minimum).

Gradient descent with step-size αk (it holds that αk ≥ 0 for all k and limk→∞ αk = 0) has the
following form:

xk+1 = xk + αkAxk = (I − αkA)xk.

Assuming that x0 is the starting point, then it holds that xk+1 =
(∏k

t=0(I − αk−tA)
)
x0. We

conclude that

xk+1 = diag

(
k∏
t=0

(1− λ1αt), ...,
k∏
t=0

(1− λnαt)

)
x0. (2)

We examine when it is true that limk→∞ xk = x∗. It is clear that
∏∞
t=0(1−λαt) = e

∑∞
t=0 ln(1−λαt),

and has the same convergence properties as

e−λ
∑∞
t=0 αt . (3)
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For λ > 0, the term (3) converges to zero if and only if
∑∞
t=0 αt = +∞ which is true if αt is Ω

(
1
t

)
.

Moreover, for λ = 0 it holds that the term (3) remains a constant (independently of the choice of
stepsize αk) and for λ < 0 it holds that the term (3) diverges for αt to be Ω

(
1
t

)
. Therefore, for αk

being Ω
(
1
k

)
we conclude that limk→∞ xk = 0 whenever the initial point x0 satisfies xi0 = 0 (i-th

coordinate of x0) for λi ≥ 0.

Hence, if x0 ∈ Es := span(e1, . . . , ej)
3, then xt converges to the saddle point x∗ and if x0 has a

component outside Es then gradient descent diverges. For the example above, the global stable set of
x∗ is the subspace Es which is of measure zero since Es is not full dimensional.
Remark 3.1 (αk of order O

(
1

k1+ε

)
). In the case where αk is a sequence of stepsizes that converges

to zero with a rate 1
k1+ε for any ε > 0 (example 1

k2 ,
1
2k

etc), then it holds that
∑∞
t=0 αk converges

and hence in our example above we conclude that limk→∞ xk exists, i.e., xk converges but not
necessarily to a critical point.

3.2 Technical Overview

The stability of non-homogeneous (i.e. non-autonomous) systems, at least for the case of continuous-
time systems, has been the subject of intensive investigation ([2] and references therein). Although
some work on discrete-time systems exists [26], this area is less developed and as far as we know
no explicit connections to optimization applications have been made before. Moreover, as far as
gradient descent, mirror descent, etc are concerned, the corresponding dynamical system that needs
to be analyzed is more complicated when the objective function is not quadratic and the analysis of
previous subsection does not apply.

Suppose we are given a function f that is C2, and 0 is a saddle point of f . The Taylor expansion of
the gradient descent in a neighborhood of 0 is as follows:

xk+1 = (I − αk∇2f(0))xk + η(k,xk), (4)

where η(k,0) = 0 and η(k,x) is of order o(‖x‖) around 0 for all naturals k.

Due to the error term η(k,xk), the approach for quadratic functions does not imply the existence
of the stable manifold. Inspired by the proof of Stable-manifold theorem for time homogeneous
ODEs, we prove a Stable-manifold theorem for discrete time non-homogeneous dynamical system
(4). In words, we prove the existence of a manifold W s that is not of full dimension (it has the
same dimension as Es, where Es denotes the subspace that is spanned by the eigenvectors with
corresponding positive eigenvalues of matrix∇2f(0)).

To show this, we derive the expression of (2) for the general function f to be:

xk+1 = A (k, 0)x0 +

k∑
i=0

A (k, i+ 1) η (i,xi) , (5)

where A (m,n) =
(
I − αm∇2f(0)

)
...
(
I − αn∇2f(0)

)
for m ≥ n, and A (m,n) = I if m < n.

Next, we generate a sequence {xk}k∈N from (5) with an initial point x0 = (x+
0 ,x

−
0 ), where x+

0 ∈ Es
and x−0 ∈ Eu. If this sequence converges to 0, the equation (5) induces an operator T on the space
of sequences converging to 0, and the sequence {xk}k∈N is the fixed point of T . This is so called
the Lyapunov-Perron method (see supplementary material for some brief overview of the method).
By Banach fixed point theorem (see supplementary material for the statement of the theorem), it can
be proved that the sequence {xk}k∈N (as the fixed point of T ) exists and is unique. Furthermore,
this implies that there is a unique x−0 corresponding to x+

0 , i.e. there exists a well defined function
ϕ : Es → Eu such that x−0 = ϕ(x+

0 ).

4 Stable Manifold Theorem for Time Non-homogeneous Dynamical Systems

We start this section by showing the main technical result of this paper. This is a new stable manifold
theorem that works for time non-homogeneous dynamical systems and is used to prove our main result
(Theorem 1.1) for Gradient Descent, Mirror Descent, Proximal Point and Manifold Descent. The

3{e1, ..., ed} denote the classic orthogonal basis of Rd.
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proof of this theorem exploits the structure of the aforementioned first-order methods as dynamical
systems.
Theorem 4.1 (A new stable manifold theorem). Let H be a d× d real diagonal matrix with at least
one negative eigenvalue, i.e. H = diag{λ1, ..., λd} with λ1 ≥ λ2 ≥ ...λs > 0 ≥ λs+1 ≥ ... ≥ λd
and assume λd < 0. Let η(k,x) be a continuously differentiable function such that η(k,0) = 0 and
for each ε > 0, there exists a neighborhood of 0 in which it holds

‖η (k,x)− η (k,y)‖ ≤ αkε ‖x− y‖ , for all naturals k. (6)

Let {αk}k∈N be a sequence of positive real numbers of order Ω
(
1
k

)
that converges to zero. We define

the time non-homogeneous dynamical system

xk+1 = g(k,xk), where g(k,x) = (I − αkH)x + η(k,x). (7)

Suppose that E = Es ⊕ Eu, where Es is the span of the eigenvectors corresponding to negative
eigenvalues of H , and Eu is the span of the eigenvectors corresponding to nonnegative eigenvalues
of H . Then there exists a neighborhood U of 0 and a C1-manifold V (0) in U that is tangent to Es
at 0, such that for all x0 ∈ V (0), limk→∞ g(k,xk) = 0. Moreover,

⋂∞
k=0 g̃

−1(k, 0, U) ⊂ V (0).

We can generalize Theorem 4.1 to the case where matrix H is diagonalizable and for any fixed point
x∗ (instead of 0, using a shifting argument). The statement is given below.
Corollary 4.2. Let {αk}k∈N be a sequence of positive real numbers that converges to zero. Addi-
tionally, αk ∈ Ω

(
1
k

)
. Let g(k,x) : Rd → Rd be C1 maps for all k ∈ N and

xk+1 = g(k,xk) (8)

be a time non-homogeneous dynamical system. Assume x∗ is a fixed point, i.e. g(k,x∗) = x∗ for all
k ∈ N. Suppose the Taylor expansion of g(k,x) at x∗ in some neighborhood of x∗,

g(k,x) = g(k,x∗) +Dxg(k,x∗)(x− x∗) + θ(k,x), satisfies (9)

1. Dxg(k,x∗) = I − αkG, G real diagonalizable with at least one negative eigenvalue;

2. For each ε > 0, there exists an open neighborhood centering at x∗ of radius δ > 0, denoted
as B(x∗, δ), such that

‖θ(k,u1)− θ(k,u2)‖ ≤ αkε ‖u1 − u2‖ (10)

for all k ∈ N and all u1,u2 ∈ B(x∗, δ).

There exists a open neighborhood U of x∗ and a C1-manifold W (x∗) in U , with codimension at least
one, such that for x0 ∈W (x∗), limk→∞ g(k,x∗) = x∗. Moreover,

⋂∞
k=0 g̃

−1(k, 0, U) ⊂W (x∗).

Proof. Since G is diagonalizable, there exists invertible matrix Q such that G = Q−1HQ, hence
QGQ−1 = H, where H = diag{λ1, ..., λd} (i.e., H is a diagonal matrix with entries λ1, ..., λd).
Consider the map z = ϕ(x) = Q(x − x∗). ϕ induces a new dynamical system in terms of z as
follows:

Q−1zk+1 = (I − αkG)Q−1zk + θ(k,Q−1zk + x∗).

Multiplying by Q from the left on both sides, we have

zk+1 = Q(I − αkG)Q−1zk +Qθ(k,Q−1zk + x∗) = (I − αkH)zk + θ̂(k, zk), (11)

where θ̂(k, zk) = Qθ(k,Q−1zk+x∗). Denote q(k, z) = (I−αkH)z+ θ̂(k, z) the update rule given
by equation (11). In order to apply Theorem 4.1, we next verify that θ̂(k, ·) satisfies the condition (6)
in Theorem 4.1 for all k ∈ N. It is essentially to verify that given any ε > 0, there exists a δ′ > 0,
such that∥∥∥θ̂(k,w1)− θ̂(k,w2)

∥∥∥ =
∥∥Qθ(k,Q−1w1 + x∗)−Qθ(k,Q−1w2 + x∗)

∥∥ ≤ αkε ‖w1 −w2‖
(12)

for all w1,w2 ∈ B(0, δ′). Let’s elaborate it. According to (10) of condition 2, for any given ε > 0,
and then ε

‖Q‖‖Q−1‖ is also a small positive number, there exists a δ > 0 (w.r.t. ε
‖Q‖‖Q−1‖ ), such that

‖θ(k,u1)− θ(k,u2)‖ ≤ αk
ε

‖Q‖ ‖Q−1‖
‖u1 − u2‖
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for all u1,u2 ∈ B(x∗, δ). Denote V = Q(B(x∗, δ)− x∗), i.e.

V = {w ∈ Rd : w = Q(u− x∗) for some u ∈ B(x∗, δ)},

and it is easy to see that 0 ∈ V . Since Q(u− x∗) is a diffeomorphism (composition of a translation
and a linear isomorphism) from the open ball B(x∗, δ) to Rd, V is an open neighborhood (not
necessarily a ball) of 0. Therefore, there exists an open ball at 0 with radius δ′, denoted as B(0, δ′),
such that B(0, δ′) ⊂ V . Next we show that B(0, δ′) satisfies the inequality (12). By the definition of
V , for any w1,w2 ∈ B(0, δ′) ⊂ V , there exist u1,u2 ∈ B(x∗, δ), such that

w1 = Q(u1 − x∗), w2 = Q(u1 − x∗), (13)

and the inverse transformation is given by u1 = Q−1w1 + x∗, u2 = Q−1w2 + x∗. Plugging to
inequality (12), we have∥∥∥θ̂(k,w1)− θ̂(k,w2)

∥∥∥ =
∥∥Qθ(k,Q−1w1 + x∗)−Qθ(k,Q−1w2 + x∗)

∥∥
= ‖Qθ(k,u1)−Qθ(k,u2)‖

≤ ‖Q‖ ‖θ(k,u1)− θ(k,u2)‖ ≤ ‖Q‖ αk
ε ‖u1 − u2‖
‖Q‖ ‖Q−1‖

= ‖Q‖ αk
ε

‖Q‖ ‖Q−1‖
∥∥(Q−1w1 + x∗)− (Q−1w2 + x∗)

∥∥
≤ ‖Q‖ αk

ε

‖Q‖ ‖Q−1‖
∥∥Q−1∥∥ ‖w1 −w2‖ = αkε ‖w1 −w2‖ .

Thus the verification is complete. So as a consequence of Theorem 4.1, there exists a C1-manifold
V (0) such that for all z0 ∈ V (0), limk→∞ q̃(k, 0, z0) = 0. For the neighborhood ϕ−1(B(0, δ′)) of
x∗, denote W (x∗) the local stable set of dynamical system given by g(k,x), i.e.,

W (x∗) = {x0 ∈ ϕ−1(B(0, δ)) : lim
k→∞

g̃(k, 0,x0) = x∗}.

We claim that W (x∗) ⊂ ϕ−1(V (0)) and the proof is as follows:
Suppose x0 ∈ W (x∗), then the sequence {xk}k∈N generated by xk+1 = g(k,xk) with initial
condition x0 converges to x∗. The map ϕ induces a sequence {zk}k∈N, where z0 = ϕ(x0) and

zk+1 = ϕ(xk+1) = ϕ (g(k,xk)) (14)
= Q (x∗ + (I − αkG)(xk − x∗) + θ(k,xk)− x∗) (15)

(since xk = ϕ−1(zk) = Q−1zk + x∗) (16)

= Q(I − αkG)Q−1zk +Qθ(k,Q−1zk + x∗) = (I − αkH)zk + θ̂(k, zk). (17)

Since zk = ϕ(xk), and xk → x∗, we have that zk → 0. This implies sequence zk generated
by zk+1 = q(k, zk) with initial condition z0 converges to 0, meaning that z0 = ϕ(x0) ∈ V (x∗).
Therefore W (x∗) ⊂ ϕ−1(V (0)). Let U = ϕ−1(B(0, δ)) and the proof is complete.

We conclude this section by the following corollary which can be proved using standard arguments
about separability of Rd (every open cover has a countable subcover). We denote W s(A∗) the set of
initial conditions so that the given dynamical system g converges to a fixed point x∗ such that matrix
Dxg(k,x∗) has an eigenvalue with absolute value greater than one for all k.

Corollary 4.3. Let g(k,x) : Rd → Rd be the mappings defined in Theorem 4.2. Then W s(A∗) has
Lebesgue measure zero.

5 Applications

In this section, we apply Theorem 4.1 (or its corollary 4.2) to the four of the most commonly used
first-order methods and we prove that each one of them avoids strict saddle points even with vanishing
stepsize αk of order Ω

(
1
k

)
.
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5.1 Gradient Descent

Let f(x) : Rd → R be a real-valued C2 function, and g(k,x) = x− αk∇f(x) be the update rule of
gradient descent, where {αk}k∈N is a sequence of positive real numbers. Then

xk+1 = xk − αk∇f(xk) (18)

is a time non-homogeneous dynamical system.
Theorem 5.1. Let xk+1 = g(k,xk) be the gradient descent algorithm defined by equation 18, and
{αk}k∈N be a sequence of positive real numbers of order Ω

(
1
k

)
that converges to zero. Then the

stable set of strict saddle points has Lebesgue measure zero.

Proof. We need to verify that the Taylor expansion of g(k,x) at x∗ satisfies the conditions of
Corollary 4.2. Condition 1 is obvious since the Hessian ∇2f(x∗) is diagonalizable and has at least
one negative eigenvalue. It suffice to verify condition 2. Consider the Taylor expansion of g(k,x) in
a neighborhood U of x∗:

g(k,x) = g(k,x∗) +Dxg(k,x∗)(x− x∗) + θ(k,x)

= x∗ + (I − αk∇2f(x∗))(x− x∗) + θ(k,x)

= x− αk∇2f(x∗)(x− x∗) + θ(k,x).

So we can write θ(k,x) = g(k,x)− x + αk∇2f(x∗)(x− x∗), and then the differential of θ(k,x)
with respect to x is Dxθ(k,x) = Dx(g(k,x) − x) + αk∇2f(x∗) = −αk∇2f(x) + αk∇2f(x∗).
From the Fundamental Theorem of Calculus and chain rule for multivariable functions, we have

θ(k,x)− θ(k,y) =

∫ 1

0

d

dt
θ(k, tx + (1− t)y)dt =

∫ 1

0

Dzθ(k, z)|z=tx+(1−t)y · (x− y)dt.

By the assumption of f being C2, we have that ∇2f(x) is continuous everywhere. And then for any
given ε > 0, there exists a open ball B(x∗) centering at x∗, such that

∥∥∇2f(x)−∇2f(x∗)
∥∥ for all

x ∈ B(x∗). And this implies that ‖Dxθ(k,x)‖ ≤ αkε for all x ∈ B(x∗). Since tx+(1−t)y ∈ B(x∗)

if x,y ∈ B(x∗), we have that
∥∥Dzθ(k, z)|z=tx+(1−t)y

∥∥ ≤ αkε for all t ∈ [0, 1]. By Cauchy-Schwarz
inequality, we have

‖θ(k,x)− θ(k,y)‖ =

∥∥∥∥∫ 1

0

Dzθ(k, z)|z=tx+(1−t)y · (x− y)dt

∥∥∥∥
≤
(∫ 1

0

∥∥Dzθ(k, z)|z=tx+(1−t)y
∥∥ dt) · ‖x− y‖ = αkε ‖x− y‖ ,

the verification completes. By Corollary 4.2 and Corollary 4.3, we conclude that the stable set of
strict saddle points has Lebesgue measure zero.

5.2 Mirror Descent

We consider mirror descent algorithm in this section. Let D be a convex open subset of Rd, and
M = D ∩A for some affine space A. Given a function f : M → R and a mirror map Φ, the mirror
descent algorithm with vanishing step-size is defined as

xk+1 = g(k,xk) := h(∇Φ(xk)− αk∇f(xk)), (19)

where h(x) = argmaxz∈M 〈z,x〉 − Φ(z).
Definition 5.2 (Mirror Map). We say that Φ is a mirror map if it satisfies the following properties.

• Φ : D→ R is C2 and strictly convex.

• The gradient of Φ is surjective onto Rd, that is∇Φ(D) = Rd.

• ∇RΦ diverges on the relative boundary of M , that is limx→∂M ||∇RΦ(x)|| =∞.
Theorem 5.3. Let xk+1 = g(k,xk) be the mirror descent algorithm defined by equation (19), and
{αk}k∈N be a sequence of positive real numbers of order Ω

(
1
k

)
that converges to zero. Then the

stable set of strict saddle points has Lebesgue measure zero.
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5.3 Proximal Point

The proximal point algorithm is given by the iteration

xk+1 = g(k,xk) := arg min
z
f(z) +

1

2αk
‖xk − z‖2 . (20)

Theorem 5.4. Let xk+1 = g(k,xk) be the proximal point algorithm defined by equation (20), and
{αk}k∈N be a sequence of positive real numbers of order Ω

(
1
k

)
that converges to zero. Then the

stable set of strict saddle points has Lebesgue measure zero.

5.4 Manifold Gradient Descent

Let M be a submanifold of Rd, and TxM be the tangent space of M at x. PM and PTxM be the
orthogonal projector onto M and TxM respectively. Assume that f : M → R is extendable to
neighborhood of M and let f̄ be a smooth extension of f to Rd. Suppose that the Riemannian metric
on M is induced by Euclidean metric of Rd, then the Riemannian gradient∇Rf(x) is the projection
of the gradient of f(x) on Rd, i.e. ∇Rf(x) = PTxM∇f(x). Then the manifold gradient descent
algorithm is:

xk+1 = g(k,xk) := PM (xk − αkPTxk
M∇f(xk)). (21)

Theorem 5.5. Let xk+1 = g(k,xk) be the manifold gradient descent defined by equation (21), and
{αk}k∈N be a sequence of positive real numbers of order Ω

(
1
k

)
that converges to zero. Then the

stable set of strict saddle points has measure zero.

For the case when M is not a submanifold of Rd, the manifold gradient descent algorithm depends
on the Riemannian metric R defined intrinsically, i.e., R is not induced by any ambient metric.
Given f : M → R, the Riemannian gradient ∇Rf is defined to be the unique vector field such that
R(∇Rf,X) = ∂Xf for all vector field X on M . In local coordinate systems x(p) = (x1, ..., xd),
p ∈M , the Riemannian gradient is written as∇Rf(x) =

(
R1j ∂f

∂xj
, ..., Rdj ∂f∂xj

)
=
(
Rij
)
· ∇f(x),

where
(
Rij
)

is the inverse of the metric matrix at the point x and Rij ∂f∂xj =
∑
j R

ij ∂f
∂xj

as the
Einstein convention. Then the update rule (in a local coordinate system) is

xk+1 = g(k,xk) := xk − αk
(
Rij
)
· ∇f(xk). (22)

Theorem 5.6. Let xk+1 = g(k,xk) be the manifold gradient descent defined by equation (22), and
{αk}k∈N be a sequence of positive real numbers of order Ω

(
1
k

)
that converges to zero. Then the

stable set of strict saddle points has measure zero.

6 Conclusion

In this paper, we generalize the results of [16] for the case of vanishing stepsizes. We showed that if
the stepsize αk converges to zero with order Ω

(
1
k

)
, then gradient descent, mirror descent, proximal

point and manifold descent still avoid strict saddles. We believe that this is an important result
that was missing from the literature since in practice vanishing or adaptive stepsizes are commonly
used. Our main result boils down to the proof of a Stable-manifold theorem 4.1 that works for time
non-homogeneous dynamical systems and might be of independent interest. We leave as an open
question the case of Block Coordinate Descent (as it also appears in [16]).
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Figure 1: Steps of Gradient Descent for x2 − y2. (0, 0) is a strict saddle. Stepsizes 1√
k
, 1k (blue,

green) avoid (0, 0) (blue faster than green). Stepsize 1
k4 (red) converges to a non-critical point.
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