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Abstract

Graph-based semi-supervised learning is very important for many classification
tasks, but most existing methods assume that all labelled nodes are randomly
sampled. With the presence of nonignorable nonresponse, ignoring all missing
nodes can lead to significant estimation bias and handicap the classifiers. To solve
this issue, we propose a Graph-based joint model with Nonignorable Missingness
(GNM) and develop an imputation and inverse probability weighting estimation
approach. We further use graphical neural networks to model nonlinear link
functions and then use a gradient descent (GD) algorithm to estimate all the
parameters of GNM. We prove the identifiability of the GNM model and validate
their predictive performance in both simulations and real data analysis through
comparing with models ignoring or misspecifying the missingness mechanism.
Our method can achieve up to 7.5% improvement than the baseline model for the
document classification task on the Cora dataset.

1 Introduction

Graph-based semi-supervised learning problem has been increasingly studied due to more and more
real graph datasets. The problem is to predict all the unlabelled nodes in the graph based on only a
small subset of nodes being observed. A popular method is to use the graph Laplacian regularization
to learn node representations, such as label propagation [25] and manifold regularization [3]. Recently,
attention has shifted to the learning of network embeddings [12, 13, 20, 7, 23, 10, 6]. Almost all
existing methods assume that the labelled nodes are randomly selected. However, the probability of
missingness may depend on the unobserved data after conditioning on the observed data in the real
world. For example, when predicting the traffic volume of a road network, sensors used to collect
data are usually set up at intersections with large traffic flow. A researcher is more likely to label
the documents in a citation network that fall into the categories which he or she is more familiar
with. In these cases, non-responses may be missing not at random (MNAR). Ignoring nonignorable
nonresponses may be unable to capture the representativeness of remaining samples, leading to
significant estimation bias.

Modeling non-ignorable missingness is challenging because the MNAR mechanism is usually
unknown and may require additional model identifiability assumptions [5, 14, 21]. A popular method
assigns the inverse of estimated response probabilities as weights to the observed nodes [16, 4],
but these procedures are designed for the missing at random (MAR) mechanism instead of MNAR.
Another method is to impute missing data by using observed data [18, 19, 11]. Some more advanced
methods [24, 21] have been proposed to estimate the non-ignorable missingness using external
data [8], but such data is often unavailable in many applications, making these methods infeasible.
Moreover, all these methods are built on simple regressions and are not directly applied to graphs.
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In this paper, we develop a Graph-based joint model with Nonignorable Missingness (GNM) by
assigning inverse response probability to labelled nodes when estimating the target classifier or
regression. To model the non-ignorable missingness, we propose a deep learning based exponential
tilting model to utilize the strengths of neural networks in function approximation and representation
learning. The main contributions of this paper can be summarized as follows:

• To the best of our knowledge, we are the first to consider the graph-based semi-supervised
learning problem in the presence of non-ignorable nonresponse and try to solve the problem
from the perspective of missing data.

• We introduce a novel identifiability in prediction-equivalence quotient (PEQ) space for
neural network architectures and its easily checked sufficient conditions.

• Different from traditional statistical methods which extract features and fit the prediction
model separately, we propose a novel joint estimation approach by integrating the inverse
weighting framework with a modified loss function based on the imputation of non-response.
It is easy to implement in practice and is robust to the normality assumption when the node
response is continuous.

• We use gradient descent (GD) algorithm to learn all the parameters, which works for
traditional regression model as well as for modern deep graphical neural networks.

• We examine the finite sample performance of our methods by using both simulation and
real data experiments, demonstrating the necessity of ’de-biasing’ in acquiring unbiased
prediction results on the testing data under the non-ignorable nonresponse setting.

2 Model Description

Let G = (V,E,A) be a weighted graph, where V = {v1, . . . , vN} denotes the vertex set of size
|V | = N , E contains all the edges, and A is an N × N adjacency matrix. The N vertexes make
up the whole population with only a small subset of vertexes being labelled. We introduce some
important notations as follows:

(i). x = [x1, x2, . . . , xN ]T ∈ RN×p is a fully observed input feature matrix of size N × p with each
xi ∈ Rp being a p× 1 feature vector at vertex vi.

(ii). Y = (y1, y2, . . . , yN )T is a vector of vertex responses, which is partially observed subject to
missingness, and yi can be either categorical or continuous.

(iii). A ∈ RN×N is the adjacency matrix (binary or weighted), which encodes node similarity and
network connectivity. Specifically, aij represents the edge weight between vertexes vi and vj .

(iv). ri ∈ {0, 1} is a “labeling indicator”, that is yi is observed if and only if ri = 1. Let
R = {1, . . . , n} denote the set of labelled vertexes and Rc = {n+ 1, . . . , N} defines the subsample
of non-respondents for which the vertex label is missing.

(v) GA(x; θg) ∈ RN×q denotes a q × 1 vector of unknown function of x, which can be a deep neural
network incorporating the network connectivity A, such as a multi-layer GCN [10] or GAT [22].

In this paper, we consider an non-ignorable response mechanism, where the indicator variable
ri depends on yi (which is unobserved when ri = 0). It is assumed that ri follows a Bernoulli
distribution as follows:

ri|(yi, h(xi; θh)) ∼ Bernoulli(πi), (1)
where h(xi; θh) is an unknown parametric function of xi and π(yi, h(xi; θh)) = P (ri =
1|yi, h(xi; θh)) is the probability of missingness for yi. Given GA(x; θg), yi and yj are assumed
to be independent and given yi and h(xi; θh), ri and rj are assumed to be independent for i 6= j.
Furthermore, an exponential tilting model is proposed for πi as follows:

π(yi, h(xi; θh)) = π(yi, h(xi; θh);αr, γ, φ) =
exp{αr + γTh(xi; θh) + φyi}

1 + exp{αr + γTh(xi; θh) + φyi}
. (2)

Our question of interest is to unbiasedly learn an outcome model Y |x. Without loss of generality,
when y is continuous, we consider a linear model given by

Y = α+ GA(x; θg)β + ε, (3)

2



where ε = (ε1, · · · , εN )T ∼ N(0, σ2I) and ε ⊥ x is the error term with zero unconditional mean,
that is, E(εi) = 0. In this case, dropping out missing data can lead to strongly biased estimates
when r depends on y. The parameter estimates will not be consistent since E{εi|ri = 1} and
E{εiGA(x; θg)i|ri = 1} are not zero. The missing values could not be imputed even if we would
have consistent estimates since

E{yi|ri = 0,GA(x; θg)i;α, β} =
E{yi(1− ri)|GA(x; θg)i;α, β}
1− P (ri = 1|GA(x; θg)i;α, β)

(4)

= α+ βTGA(x; θg)i −
cov(yi, πi|GA(x; θg)i;α, β)

1− E(πi|GA(x; θg)i;α, β)
6= α+ βTGA(x; θg)i.

When y is a K-class discrete variable, we consider an multicategorical logit model as follow:

P (yi = k|GA(x; θg)i;αk, βk) = exp(αk+βTk GA(x; θg)i)/

K∑
j=1

exp(αj +βTj GA(x; θg)i) ∀k (5)

Therefore, we can define a joint model of (1) and (3) (or (1) and (5)), called Graph-based joint model
with Nonignorable Missingness (GNM) to obtain the unbiased estimation of Y |x.

3 Estimation

We examine several important properties, such as identifiability, of GNM and its estimation algorithm
in this section.

3.1 Identifiability

We consider the identifiability property of GNM. Let Y = (yTobs, y
T
mis)

T and J = (R,Rc). The joint
probability density function (pdf) of the observed data is given by

f(yobs, J |x) = f(y1, y2 . . . , yn, r1, . . . , rN |x) =

n∏
i=1

f(yi, ri|x)

N∏
i=n+1

∫
f(yi, ri|x)dyi. (6)

Based on the assumptions of ri|(yi, h(xi)) and yi|GA(x; θg)i, (6) is equivalent to∏
i

[P (ri = 1|yi, h(xi; θh))f(yi|GA(x; θg)i)]
ri [1−

∫
P (ri = 1|y, h(xi; θh))f(y|GA(x; θg)i)dy]1−ri .

(7)
The GNM model is called identifiable if for different sets of parameters (θh, θg), P (ri =

1|yi, h(xi; θh))f(yi|GA(x; θg)i) are different functions of (yi, x). The identifiability implies that in
a positive probability, the global maximum of (7) is unique.

However, identifiability may fail for many neural network models. For example, the identifiability of
parameters in (1) is one of the necessary conditions for model identifiability, which can fail for the
Relu network. Specifically, we have

Logit[P (ri = 1|yi, h(zi;βr)); γ] = αr+γRelu(ziβr)+φyi = Logit[P (ri = 1|yi, h(zi; 2βr)); γ/2].

Fortunately, this type of non-identifiability does not create any prediction discrepancy, since under
GNM, the prediction of y given x is exactly the same for different (γ, θh, β, θg) and (γ′, θ′h, β

′, θ′g)
if we have

γTh(x; θh) = γ′Th(x; θ′h), and GA(x; θg)β = GA(x; θ′g)β
′. (8)

In consideration of the prediction equivalence, a more useful definition of identifiability is given in the
following. Let f(yi|GA(x)i; θy) = f(yi|GA(x; θg)i;α, β) and P (ri = 1|yi, h(zi); θr) = P (ri =
1|yi, h(zi; θh);αr, γ, φ), where θy = (α, β, θg) and θr = (αr, γ, φ, θh) contain unknown parameters
in the outcome model Y |x and the missing data model r|(y, z). The D(θy) ⊗ D(θr) denotes the
domain of (θy, θr), where ⊗ is the tensor product of two spaces.
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Definition 3.1. Under GNM, we call (θy, θr) is equivalent to (θ′y, θ
′
r), denoted by

(θy, θr) ∼ (θ′y, θ
′
r),

if (8) holds and α′ = α, α′r = αr and φ′ = φ, where θy = (α, β, θg), θr = (αr, γ, φ, θh), θ′y =
(α′, β′, θ′g), and θ′r = (α′r, γ

′, φ′, θ′h). The equivalence class of an element (θy, θr) is denoted by
[[(θy, θr)]], defined as the set

[[(θy, θr)]] = {(θ′y, θ′r) ∈ D(θy)⊗D(θr)|(θ′y, θ′r) ∼ (θy, θr)},

and the set of all equivalent classes is called the Prediction-Equivalent Quotient (PEQ) space,
denoted by S = D(θy)⊗D(θr)/ ∼ . The GNM model is called identifiable on the PEQ space iff that

f(y|GA(x)i; θy)P (r = 1|y, h(xi); θr) = f(y|GA(x)i; θ
′
y)P (r = 1|y, h(xi); θ

′
r)

holds for all x, y implies (θy, θr) ∼ (θ′y, θ
′
r).

Different from identifiability on the parameter space, the identifiability on the PEQ space implies
the uniqueness of the prediction given x instead of parameter estimation. It is applicable to complex
architecture that focuses more on prediction than parameter. The following is an example which is
not identifiabile on both parameter space and PEQ space.

Example 1. Let GA(x; θg) = x, h(x; θh) = x, yi ∼ N(µ + xβ, 1), and P (ri = 1|yi) = [1 +
exp(−αr − xγ − φyi)]−1 with unknown real-valued αr, γ, φ, µ and β, and thus

P (ri = 1|yi, h(xi))f(yi|GA(x)i) =
exp[−(yi − µ− xiβ)2/2]√

2π[1 + exp(−αr − φyi − γx)]
. (9)

In this case, two different sets of parameters (αr, γ, φ, µ, β) and (α′r, γ
′, φ′, µ′, β′) produce equal

(9) values if αr = −(µ2 − µ′2)/2, β′ = β, φ = µ′ − µ, γ = β(µ − µ′), α′r = −αr, φ′ = −φ, and
γ = −γ′. The observed likelihood is only identifiable with ignorable missingness, i.e. φ = φ′ = 0.

Additional conditions are required to ensure the identifiability of GNM on the PEQ space.
Theorem 3.1. Assume three conditions as follows.

(A1) For all θg , there exist (x1, x2) such that GA(x1; θg)i 6= GA(x2; θg)i for each i; β 6= 0 holds.

(A2) For all θg and z, there exists (u1,u2) such that GA([z,u1]; θg)i 6= GA([z,u2]; θg)i for each i;
and β 6= 0 holds.

(A3) For all θh, there exists (z1, z2) such that h(z1; θh) 6= h(z2; θh); and γ 6= 0 holds.

The GNM model (1) and (5) is identifiable on the PEQ space under Condition (A1). Suppose that
there exists an instrumental variable u in x = [z,u] such that f(yi|GA(x)i) depends on u, whereas
P (ri = 1|yi, h(xi)) does not. Then the GNM model (1) and (3) is identifiable on the PEQ space
under Conditions (A2) and (A3).

Regularity conditions (A1)∼(A3) are easy to satisfy.

3.2 Estimation Approach

It is not easy to directly maximize the full likelihood function (6) in practice since it can be extremely
difficult to compute its integration term. On the other hand, the normality assumption of the error
term can be restrictive for GNM consisting of (1) and (3). Therefore, we propose a doubly robust
(DR) estimation approach to alternatively obtain the Inverse Probability Weighted Estimator (IPWE)
of θy and imputation estimator of θr [15, 1].

Inverse Probability Weighted Estimator (IPWE) of θy

With π(yi, h(xi); θr) estimated by π(yi, h(xi); θ̂r), the Inverse Probability Weighted Estimator
(IPWE) of θy can be obtained by minimizing the weighted cross-entropy loss

L1(θy|θ̂r) = −
∑
i

ri

π(yi, h(xi); θ̂r)

K∑
k=1

1(yi = k)log(P (yi = k|GA(x)i; θy)) (10)
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when Y |x follows (5) or by minimizing the weighted mean squared error (MSE)

L1(θy|θ̂r) =
∑
i

ri

π(yi, h(xi); θ̂r)
{yi − α− βTGA(x; θg)i)}2 (11)

when Y is continuous. The estimation equation (11) is robust with respect to the normality assumption.
If π(yi, h(xi); θr) is correctly specified, the IPW estimator of θy that solves ∂L1(θy|θ̂r)/∂θy = 0 is
consistent and converges to θy according to the following theorem.

Theorem 3.2. If θr is known, then a given estimating function l(yi,GA(x)i; θy) with
Eθy{

∑
i l(yi,G

A(x)i; θy)} = 0 satisfies

Eθy{
∑
i

ri
π(yi, h(xi); θr)

l(yi,G
A(x)i; θy)} = 0.

Imputation estimator of θr

With the estimated f(Y |GA(x; θ̂g)), we could obtain an estimator of θr by minimizing

L2(θr|θ̂y) = −
∑
ri=1

log(π(yi, h(xi); θr))−
∑
ri=0

log(1− E{π(yi, h(xi); θr)|x; θ̂y}), (12)

where π(yi, h(xi); θr) = P (ri = 1|yi, h(xi); θr) and E{π(yi, h(xi))|x; θ̂y} =
∫
P (ri =

1|y, h(xi); θr)f(y|GA(x)i; θ̂y)dy. One advantage of our proposed joint estimation approach is
that E(π(yi, h(xi); θr)|x) can be easily approximated by the empirical average of a set of random
draws at the nodes with missing y as the imputed responses:

E{π(yi, h(xi); θr)|x; θy} =

∫
P (ri = 1|y, h(xi); θr)f(y|GA(x)i; θy)dy ≈ B−1

∑
b

π(yib, h(xi); θr),

where {yib}Bb=1
iid∼ f(y|GA(x)i; θ̂y). Thus, we can get an unbiased estimate of (12) by replacing the

expectation by an empirical mean over samples generated from f(y|GA(x)i; θ̂y) as follows:

L̃2(θr|θ̂y) = −
∑
ri=1

ln(π(yi, h(xi); θr))−
∑
ri=0

log(1−B−1
∑

yib∼f(y|G A(x)i;θ̂y)

π(yib, h(xi); θr)),

(13)
the gradient of which can be expressed as

∇θrL̃2(θr|θ̂y) = −
∑
ri=1

∇θrπi
πi

+
∑
ri=0

B−1
∑
b∇θrπ(yib, h(xi); θr)

1−B−1
∑
b π(yib, h(xi); θr)

. (14)

The imputation estimator of θr by minimizing L2(θr|θy) is consistent when f(Y |GA(x; θg)) is
correctly specified. The overall estimation procedure is schematically depicted in Figure 1.

3.3 Algorithm

In this subsection, we provide more details of our proposed imputation and IPW estimation ap-
proach about how to jointly estimate θy and θr by alternatively minimizing the conditional loss
functions L1(θy|θ̂r) and L̃2(θr|θ̂y) in practice. Specifically, we update θy and then θr with
θ

(e+1)
y = arg minθy L1(θy|θ(e)

r ) and θ(e+1)
r = arg minθr L̃2(θr|θ(e+1)

y ) in order at each epoch,
where θ(e)

r and θ(e+1)
y are the estimates of θr and θy obtained at the e-th and (e + 1)-th epoch,

respectively. We use the gradient descent (GD) algorithm to learn all the parameters in θr and θy,
while incorporating the network architecture of GA(x; θg) and h(x; θh).

Without specifying the normal assumption when yi is continuous, we replace the random draw y
(e)
ib in

(13) by the expectation of β0 + βT1 GA(x; θ
(e)
g )i at the e-th epoch. It can be seen as an approximation

obtained by linearizing π(yi, h(xi)) using a Taylor series expansion and taking the expectation of the
first two terms [2]:

E{π(yi, h(xi))|x; θ(e)
y } ≈ π(E(yi|x; θ(e)

y ), h(xi)) = π(β0 + βT1 GA(x; θ(e)
g )i, h(xi)).
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Figure 1: General Picture of the Joint Estimation Approach

In this case, it is equivalent to let B = 1 and the sample size, i.e. the total number of nodes will be
fixed at each training epoch. Based on simulations and real experiments below, this simplification
still outperforms the baseline models with a significant improvement in the prediction accuracy on
non-response nodes.

The details of the algorithm are described in five steps as follows:

1. Determine the initial value of the response probability π(0)
i (or θ(0)

r ). For example, we can
let π(0)

i = 1 for all the labelled vertexes (ri = 1).

2. Let e = 1, where e represents the number of epoch. We update θy based on π(0)
i obtained

from the previous epoch by minimizing the loss function in (10) using GD. At the i-th
iteration within the e-th epoch, we update θy as follows:

θ(e,i+1)
y ← θ(e,i)

y − γ0∇θyL1(θy|θ(e−1)
r ), (15)

where γ0 is the learning rate and L1(θy|θ(e−1)
r ) represents the loss function based on

π
(e−1)
i = πi(yi, h(xi); θ

(e−1)
r ). We denote the updated θy as θ(e)

y after M (e) iterations.

3. Impute yi for all the unlabelled nodes ri = 0 using y(e)
i = β

(e)
0 + GA(x; θ

(e)
g )Ti β

(e)
1 for the

continuous case and sampling y(e)
i from distribution P (yi|GA(x)i; θ

(e)
y ) otherwise.

4. We use GD to update θr. Specifically, at the j-th iteration, we have

θ(e,j+1)
r ← θ(e,j)

r − γ1∇θrL̃2(θr|θ(e)
y ) (16)

with the initial start θ(e,0)
r equal to θ(e−1)

r , and γ1 is the learning rate. After convergence, we
can get the estimate of θr denoted as θ(e)

r at the end of this training epoch. Then we update
the sampling weight π(e)

i based on P (ri = 1|yi, h(xi); θ
(e)
r ) for all labelled vertexes.

5. Stop once convergence has been achieved, otherwise let e = e+ 1 and return to step 3.

The convergence criterion is that whether the imputed unlabelled vertexes at epoch e only slightly
differ from those at epoch (e− 1). In other words, the iteration procedure is stopped if∑

ri=0

|y(e)
i − y

(e−1)
i |/

∑
i

1(ri = 0) ≤ ε

We let M0 and M1 be the maximal number of allowed internal iterations at each epoch for updating
θy and θr, respectively. For more details, you can refer to the Algorithm 1 in the supplements.

Theoretically, the complexity (for example one layer GCN) in Steps 2 and 3 is O(|E|pq) at each
epoch according to [10], where |E| < N2 is the number of edges. Moreover, the complexity of Step
4 is O(Np) when h is a one fully connected layer.
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4 Experiments

In this section, simulations and one real data analysis are conducted to evaluate the empirical
performance of our proposed methods and a baseline model, which ignores the non-response (SM).
Our GNM model reduces to SM when it only contains the outcome model Y |x given in (3) (or (5))
with the weights in loss (10) being 1 for all samples. In the real data part, GNM is also compared with
the model with a misspecified ignorable missing mechanism, and some other state-of-art ’de-biasing’
methods. In the simulation part, we simulate the node response y based on (3) and generate the
labelled set by the exponential tilting model (1). For the real data analysis, we evaluate all the
compared models by a semi-supervised document classification on the citation network-Cora with
non-ignorable non-response.

In this paper, we use GCN to learn the latent node representations GA(x) with the layer-wise
propagation defined as

H(l+1) = f(H(l), A) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l)), (17)

where Â = A+ I , in which I is an identity matrix, and D̂ is the diagonal vertex degree matrix of Â.
The W (l) is a weight matrix for the l-th layer and σ(·) is an non-linear activation function. H(0) = x
is the initial input and GA(x) = H(2) ∈ RN×p̄ is the output of the second layer-wise propagation.
To be fair, we let GA(x) be a 2-layer GCN model for all compared approaches.

4.1 Simulations

We consider a network data generated by |V | = 2708 vertexes together with a binary adjacency
matrix A. x ∈ R2708×1433 denotes the fully observed input features which is a large-scale sparse
matrix. Both A and x are obtained from the Cora dataset. The node response is simulated from the
following model:

yi = β0 + βT1 GA(x)i + εi, (18)

where εi ∼ N(0, σ2) and GA(x) is the output of a 2-layer GCN model. We let response probability
π depend on the unobserved vertex response y only , and (1) is simplified to

πi ≡ P (ri = 1|yi) =
exp{αr + φyi}

1 + exp{αr + φyi}
. (19)

In this case, the instrumental variable u is exactly x itself, and the identifiability automatically holds
according to Theorem 3.1. All β’s in (18) are sampled from uniform distribution U(0, 1). The αr
and φ were selected to make the overall missing proportion be approximately 90%. The labelled
subset are randomly split into training and validation sets, while the remaining non-response nodes
build the testing set. We train all the compared models for a maximum of 200 epochs (E = 200)
using Adam [9] with a learning rate 0.05 and make predictions ŷi for each testing vertex. Training is
stopped when validation loss does not decrease in 15 consecutive iterations. We keep all other model
settings used by [10] and fix the unit size of the first hidden layer to be 16.

Table 1 summarizes the estimation results under different (p̄, σ) combinations, where root mean
squared error (RMSE) and Mean absolute percentage error (MAPE) are computed between the true
node response y and prediction ŷ over the 50 runs. We can clearly see that GNM outperforms SM
under all the four settings with much smaller mean RMSEs and MAPEs. Moreover, GNM is more
stable than SM with smaller estimation variance.

4.2 Real Data Analysis

For the real data analysis, we modify the Cora to a binary-class data by merging the six non-
’Neural Network’ classes together. The global prevalence of two new classes are (0.698, 0.302) with
N0 = #{y = 0} = 1890 and N1 = #{y = 1} = 818, respectively.

Two missing mechanisms are considered. A simple setup is the same as (19). In this case, we compare
our method with the inverse weighting approach proposed by [17]. We let the two functions of x
required to estimate π under their framework to be the constant 1 and the first principle component
(PC) score, which is more stable compared to other functions such as a general xj or

∑
j xj . In a
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p̄ σ Method Metric Mean SD
4 0.5 SM RMSE 1.1925 6.43e-1

MAPE 0.2932 2.01e-1
GNM RMSE 0.6983 1.28e-2

MAPE 0.1995 1.00e-2
1 SM RMSE 1.6185 8.58e-2

MAPE 0.3104 4.73e-2
GNM RMSE 1.2103 4.81e-2

MAPE 0.2263 2.28e-2
16 0.5 SM RMSE 0.7923 9.94e-2

MAPE 0.2014 2.42e-2
GNM RMSE 0.6015 2.17e-2

MAPE 0.1672 1.90e-2
1 SM RMSE 1.4212 2.14e-1

MAPE 0.2129 1.05e-2
GNM RMSE 1.1316 6.04e-2

MAPE 0.1849 4.62e-3

Table 1: Mean RMSEs and MAPEs by GNM and
SM based on simulated data sets Figure 2: Boxplot of RMSEs in real data analysis

more complicated setup, the labelled nodes are generated based on

πi ≡ P (ri = 1|yi, h(xi)) =
exp{αr + γTh(xi) + φyi}

1 + exp{αr + γTh(xi) + φyi}
, (20)

where h(xi) = exp(
∑
j xij/a0−a1)− (

∑
j xij−a2)/a3 with value range being [0, 1]. The explicit

form of h(x) is assumed to be unknown and we use a multi-layer perceptron to approximate it. The
network has two hidden layers with 128 and 64 units. respectively, and we use the ’tanh’ activation
for the final output layer. As a comparison, we also include the results when the ’non-ignorable’
missingness is over-simplified to the ’ignorable’ one (GIM). We let nk = #{(yi = k) ∧ (ri = 1)},
and use λ to denotes the size ratio between the two groups of labelled nodes, i.e. n1/n0. We carry out
more experiments on other datasets including ’Citeseer’, and explore the finite sample performance
of our method using other state-of-art architecture such as GAT [22]. More details are provided in
the supplementary materials. 1

Accuracy
λ Method Mean SD
1 SM 0.8683 1.98e-2

Rosset 0.8514 5.19e-2
GNM 0.8947 6.47e-3

1.5 SM 0.8458 2.21e-2
Rosset 0.8311 7.09e-2
GNM 0.8908 1.26e-2

2 SM 0.8052 3.26e-2
Rosset 0.8193 6.05e-2
GNM 0.8648 2.54e-2

Table 2: Mean Prediction Ac-
curacy for the simple setup by
each method Figure 3: Boxplot Prediction Accuracy for the simple setup

Results are summarized in Tables 2 and 3. Reported values represent the average classification
accuracy on testing data by 50 replications with re-sampling allowed. In each setup, two ’de-biasing’
methods including our approach are compared with SM. We adjust α and β to make the size of training
set be around 120 for each sub-setting. Increasing λ reduces the number of included y = 0 nodes
in the training set, leading to an insufficient learning power and thus a lower overall classification

1Our implementation of GNM can be found at: https://github.com/BIG-S2/keras-gnm
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Accuracy
λ Method Mean SD
1 SM 0.8663 1.21e-2

GIM 0.8713 1.52e-2
GNM 0.8961 1.18e-2

2 SM 0.8141 2.34e-2
GIM 0.8291 2.79e-2

GNM 0.8669 1.63e-2

Table 3: Mean Prediction Ac-
curacy for the complicated
setup by each method Figure 4: Boxplot of Prediction Accuracy for the complicated setup

Figure 5: Number of iteration times for GNM and SM at each epoch under sub-setting one

accuracy. For the simple setup, GNM significantly outperforms compared models by increasing
the baseline prediction accuracy by 3.1% - 7.4%. On the other hand, GNM is less sensitive to the
sample selection and has smaller variance compared to the method by [17]. For the complicated
setup, mis-specifying the ’Non-Ignorable’ missingness as ’Ignorable’ still has big biases even though
achieving some improvement against SM. The mean prediction accuracy by GNM is between 3.7%
to 4.8% higher than that by GIM.

In both sub-settings, our method always leads to the smallest estimation variance, which is less
affected by the selection of labelled nodes. For both setups, higher λ value leads to bigger sampling
bias, and subsequently there is more significant improvement in the prediction accuracy. Figures 3
and 4 are the boxplots of prediction accuracy obtained from each method under the two model setups.
It may intuitively demonstrates the necessity of taking into account missing mechanism in order to
achieve higher prediction accuracy on the unlabelled nodes.

We also empirically analyze the computational efficiency of our algorithm. The number of epochs for
GNM to achieve convergence in the 50-run real-data experiments is 3 (21), 4 (19), 5 (7), and 6 (3) in
Setting 1. Figure 5 summaries the number of iterations for the 2-layer GCN in SM and those for Step
2 of our algorithm at each epoch. It is demonstrated that the computational cost of our GNM model
at each epoch is comparable to that of the baseline GCN model.
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