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Abstract

Efficient exploration is crucial to achieving good performance in reinforcement
learning. Existing systematic exploration strategies (R-MAX, MBIE, UCRL, etc.),
despite being promising theoretically, are essentially greedy strategies that follow
some predefined heuristics. When the heuristics do not match the dynamics of
Markov decision processes (MDPs) well, an excessive amount of time can be
wasted in travelling through already-explored states, lowering the overall efficiency.
We argue that explicit planning for exploration can help alleviate such a problem,
and propose a Value Iteration for Exploration Cost (VIEC) algorithm which com-
putes the optimal exploration scheme by solving an augmented MDP. We then
present a detailed analysis of the exploration behaviour of some popular strategies,
showing how these strategies can fail and spend O(n2md) or O(n2m + nmd)
steps to collect sufficient data in some tower-shaped MDPs, while the optimal
exploration scheme, which can be obtained by VIEC, only needs O(nmd), where
n,m are the numbers of states and actions and d is the data demand. The analysis
not only points out the weakness of existing heuristic-based strategies, but also
suggests a remarkable potential in explicit planning for exploration.

1 Introduction

In reinforcement learning (RL), exploration plays a key role in deciding the quality of data and thus
has a direct impact to the overall performance. Simple exploration strategies such as ε-greedy may
need exponentially many steps to find a (near-)optimal policy [1]. On the other hand, more systematic
exploration strategies (R-MAX, UCRL, MBIE and their variants) have far promising theoretical
performance guarantees (see e.g. [2, 3, 4, 5]). Recently, some of these systematic strategies have been
successfully generalised and applied to deep reinforcement learning, achieving good performance in
domains that are known to be hard to explore, such as Montezuma’s Revenge [6, 7].

Systematic exploration strategies are carefully designed to ensure that sufficient data is collected for
every unknown states, so that the chance of converging to undesirable policies due to ignorance is
controlled. Unfortunately, the actual data collection process is less carefully executed, in the sense
that these strategies choose actions simply by maximising some predefined heuristics. When the
design of such heuristics does not match the properties of the learning problem well, an excessive
amount of less useful data will be collected due to revisiting well-explored states/actions.

∗The corresponding author.
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A straightforward example is as follows. Suppose both a nearby Area1 and a distant Area2 need to be
explored. The transition dynamics makes it easy to travel from Area2 to Area1, but trying to move
from Area1 to Area2 sends the agent back to Area1 with high probability. Clearly, exploring in the
order of Area2→ Area1 is better than Area1→ Area2, since the latter wastes additional time in trying
to travel to Area2 from Area1 which leads to excessive data being collected in Area1. However, most
systematic strategies choose to explore Area1 first because it is nearer than Area2 and thus has a
higher heuristic score. We call this a distance trap.

Our analysis in this paper points out that there exist cases where these heuristic-based strategies need
either O(n2md) or O(n2m + nmd) steps to collect sufficient data, while an optimal exploration
scheme only needs O(nmd), where n, m, and d denote number of states, number of actions, and the
minimum amount of data to be obtained at each state-action pair, respectively. Since n is usually very
large in real-world problems, this result indicates that a significant amount of steps can be wasted by
the heuristic-based strategies due to their careless execution of data collection. It also suggests that
explicit planning for exploration can be highly beneficial for improving learning efficiency.

The contributions of this paper are as follows.

1. Formulate the planning for exploration problem as an augmented undiscounted Markov
decision process and show that the optimal exploration scheme can be discovered by solving
the Bellman optimality equations for exploration costs.

2. Propose a Value Iteration for Exploration Cost (VIEC) algorithm for finding the optimal
exploration scheme.

3. Point out two weaknesses of existing systematic exploration strategies: (a) distance traps and
(b) reward traps, and use tower MDPs as examples to give a concrete explanation about how
existing strategies can fail and need O(n2md) or O(n2m+ nmd) steps while the optimal
exploration scheme needs only O(nmd) steps to fulfil the same exploration demand.

2 Preliminaries

In this paper we follow the common formulation of reinforcement learning [8] in which M =
(S,A, P,R, γ) represents a finite discounted Markov decision process (MDP) with set of states S,
set of actions A, transition probability function P , reward function R, and discount factor γ. Unless
otherwise stated, we use n and m to denote the number of states and actions of an MDP. A policy is
denoted π and its value functions are denoted V π(s) and Qπ(s, a), while for optimal policy we write
π∗, V ∗ and Q∗, which by definition satisfy V ∗(s) = maxπ V

π(s) and Q∗(s, a) = maxπ Q
π(s, a)

for all s ∈ S and a ∈ A. If exact information about M is available, then π∗ can be obtained by
solving the Bellman equations V ∗(s) = maxa(E[R(s, a)] + γ

∑
s′ P (s′|s, a)V ∗(s′)) or Q∗(s, a) =

E[R(s, a)] + γ
∑
s′ P (s′|s, a) maxa′ Q

∗(s′, a′) using Value Iteration algorithm [9].

In reality M is often unknown and needs to be estimated from the data collected during learning. A
straightforward way is to use P̂ (s′|s, a) = N(s, a, s′)/N(s, a) and R̂(s, a) = C(s, a)/N(s, a) as
estimates of P (s′|s, a) and E[R(s, a)], where N(s, a) and N(s, a, s′) indicate the occurrences of
choice (s, a) and transition (s, a, s′) and C(s, a) is the sum of the rewards collected at (s, a). As
N(s, a)→∞ at all (s, a), this model M̂ of M converges in probability to the true M , and thus we
can eventually obtain π∗ of M from M̂ . Such process is called model-based RL.

Researches on systematic exploration are often based on model-based RL, so that the quality of
learning is mostly decided by their exploration strategies. This paper follows this idea and limits its
scope to the model-based case, but its general suggestion (explicit planning for exploration can be
beneficial) is also applicable to model-free RL.

3 Formulation of the Planning for Exploration Problem

3.1 Data demands

Since the goal of learning is to find out a sufficiently good policy rather than to have an extremely
accurate estimate of V or Q, a finite amount of data is often sufficient for the purpose. Various
researches have shown that by applying Hoeffding’s or Chernoff’s inequalities, the minimum amount
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of data needed at each state-action pair for guaranteeing certain learning quality can be derived. For
example, [2, 10] proved that someO( 1

ε2(1−γ)4 (n+ln nm
δ )) data for each state-action pair is sufficient

for R-MAX to be (ε, δ)-PAC, while [4] proved that for MBIE it is O( 1
ε2(1−γ)4 (n + ln nm

ε(1−γ)δ )),
where n and m are the number of states and actions.

In practice, the theoretical demands of this kind are still likely to be excessive (see e.g. [11, 12, 13]),
and users usually have to specify how much data to be collected based on their domain knowledge or
trial-and-error. Whichever the case, the main idea is that such data demands are given (either directly
or indirectly) by the parameter settings prior to the actual learning process, and thus can be used to
make plans for more efficient exploration. The formal definition of data demands is as follows.

Definition 3.1 In an MDP with n states and m actions, a demand matrix D is an n×m matrix in
which entry D[s, a] = k ≥ 0 indicates that at least k more data should be collected for state-action
pair (s, a) during learning.

We writeDt to indicate the demand matrix at time t during learning. After some actionAt is executed
at some state St, the corresponding entry in the demand matrix should be subtracted by 1 unless it is
already 0, while other entries remain unchanged, that is,

Dt+1[s, a] =

{
max{0, Dt[s, a]− 1} (s, a) = (St, At)

Dt[s, a] otherwise.

For convenience, we define the demand reduction function H as follows:

H(D; s, a) :=

{
D − es,a D[s, a] > 0

D D[s, a] = 0,

where es,a is an n×m matrix filled with 0 except for the only nonzero entry es,a[s, a] = 1. Then
we can express the change of Dt after (St, At) simply as Dt+1 = H(Dt;St, At).

The demand space (the set of all possible demand matrix) of an MDP is denoted D. It is reasonable
to assume that the demands at every state-action never exceed some sufficiently large positive integer
d, thus the size of demand space is at most (d+ 1)nm.

Remark. Readers may wonder how to find out the “optimal” demand matrix (that has e.g. the least
total demand) for a given learning task. Such matrix can only be obtained with full knowledge of
the MDP, and thus is impractical to obtain in reality. Our point is that given any demand matrix, the
exploration efficiency can be improved via planning. It is achieved by minimising the amount of data
collected beyond the specified demand (i.e. optimal exploration scheme, see next section) rather than
choosing a better demand matrix, and thus the optimality of demand matrices is not the main concern
of this paper.

3.2 Planning for exploration

Demand matrix D indicates how much data is sufficient for obtaining a good policy, and we are
interested in collecting all this required amount of data with the number of steps as small as possible,
since this means that the least amount of unnecessary data is collected beyond D. The exploration
behaviour of a learning agent can be described as an exploration scheme, while its exploration cost is
the expected number of steps needed to fulfil all the demands, defined formally as follows.

Definition 3.2 An exploration scheme ψ is a mapping D × S 7→ A, where ψ(D; s) = a indicates
that action a should be taken at state s when the demand matrix is D.

Definition 3.3 The exploration cost Cψ(D; s, a) is the expected time t that the current demand Dt

first becomes the all-zero matrix 0 by starting from (s, a) and following ψ, i.e. Cψ(D; s, a) :=
E[inf{t : Dt+1 = 0|D1 = D,S1 = s,A1 = a,Ak = ψ(Dk;Sk) ∀k > 1}].

Given MDP M and exploration scheme ψ, the interaction process becomes a Markov process with
augmented state space D × S and transition probability Pr(D′, s′|D, s) = P (s′|s, ψ(D; s)) for
D′ = H(D; s, ψ(D; s)) and 0 otherwise. As for the exploration cost, by definition when D = 0
we have Cψ(D; s, a) = 0 for any (s, a). Any step after Dt = 0 will not result in any exploration
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cost, while each step before reaching Dt = 0 will increase the cost by 1 uniformly. Therefore, the
planning for exploration problem is an augmented undiscounted MDP, and the following Bellman
equation holds for the exploration cost:

Cψ(D; s, a) =

{
1 +

∑
s′∈S P (s′|s, a)Cψ

(
H(D; s, a); s′, ψ

(
H(D; s, a); s′

))
D 6=0

0 D=0.
(1)

Let Ψ be the set of all possible exploration schemes for a given MDP. Since less exploration cost is
more desirable, the definition for the optimal scheme is as follows.

Definition 3.4 An optimal exploration scheme ψ∗ ∈ Ψ is the one that satisfies Cψ
∗
(D; s, a) =

minψ∈Ψ C
ψ(D; s, a) for any D ∈ D, s ∈ S and a ∈ A.

For convenience we write the optimal exploration cost Cψ
∗

simply as C∗. In strongly connected
MDPs, it can be shown that similar to optimal value functions Q∗ and V ∗, the optimal exploration
cost C∗ exists and is unique. In MDPs that are not strongly connected, on the other hand, there exist
cases where some demands are not satisfiable. For example, in an MDP with two states {s1, s2}
and one action a which transits the agent to s2 with probability 1 from both s1 and s2, a demand
D[s1, a] > 1 can never be satisfied and will lead to an infinite exploration cost. However, as discussed
in Section 3.1, since users more or less have control to the exploration demands, in the rest of this
paper we assume that they do not assign unsatisfiable demands and thus C∗ exists.

3.3 Computing ψ∗

By combining Equation 1 with Definition 3.4 we get the Bellman optimality equation for C∗:

C∗(D; s, a) =

{
1 +

∑
s′∈S P (s′|s, a) mina′∈A C

∗(H(D; s, a); s′, a′) D 6=0

0 D=0.
(2)

Since this equation has structure similar to the original Bellman optimality equation for Q∗ and V ∗,
we can modify Value Iteration to compute C∗. Note that H(D; s, a) ≤ D for any D, s and a, given
an input demand matrix Din, we can easily arrange all k =

∏
s,a(Din[s, a] + 1) demand matrices

satisfying D ≤ Din by topological ordering, i.e. D(0) = (0...0; ...; 0...0), D(1) = (0...0; ...; 0...1), ...,
D(k−1) = Din, and compute C∗ from D(0) to D(k−1) to avoid extra iterations on D.

The pseudocode of the Value Iteration for Exploration Cost (VIEC) is presented in Algorithm 1,
where U(D; s) := mina C(D; s, a), which plays a role similar to V (s) in computing Q(s, a).

Algorithm 1 Value Iteration for Exploration Cost (VIEC)
Input: Demand matrix Din, transition P
Output: Exploration scheme ψ

1: Initialise all C(D; s, a) = 0, U(D; s) = 0
2: for i = 1 to

∏
s,a(Din[s, a] + 1)− 1 do

3: repeat
4: ∆ = 0
5: for s ∈ S do
6: for a ∈ A do
7: c = 1 +

∑
s′ P (s′|s, a)U

(
H(D(i); s, a); s′

)
8: ∆ = max{∆, |C(D(i); s, a)− c|}
9: C(D(i); s, a) = c

10: U(D(i); s) = mina C(D(i); s, a)
11: until ∆ < threshold
12: Output ψ such that ψ(D; s) = argminaC(D; s, a)

Similar to the original Value Iteration, with a sufficiently small stopping threshold in Line 11, C
converges to C∗ and thus the output ψ → ψ∗. The proof can be obtained straightforwardly from the
convergence proof of original Value Iteration and will not be elaborated here.
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VIEC needs to iterate over
∏
s,a(Din[s, a] + 1) = O(dnm) demand matrices and is not computation-

ally efficient in practice. Unfortunately, this is unavoidable for computing ψ∗ because even in the
simplest case with deterministic transitions and demands no more than 1, it is a Rural Postman Prob-
lem [14] which is NP-hard, thus solving in polynomial time is impossible unless P=NP. Nevertheless,
an approximation to ψ∗ might be sufficient for the purpose, and we leave this to the future work.

In most RL settings, the transition function P is not known to the learning algorithm in prior. In
this case, one possible choice is to use estimated transition P̂ instead, following an iterative process
shown in Algorithm 2. In this case, output ψ of VIEC is an optimal exploration scheme for the
environment model M̂ rather than the true environment M . With more data been collected, M̂ gets
closer to M and thus ψ becomes closer to the true ψ∗. While a ψ improving over time is surely not
as good as ψ∗, it is still better than never conduct planning, and thus Algorithm 2 should provide a
relatively efficient way of exploration in general.

Algorithm 2 Model-based RL with Planning for Exploration
Input: Initial demand D1

Output: Policy π
1: Initialise P̂ , R̂ randomly or based on prior knowledge
2: ψ = VIEC(D1, P̂ )
3: repeat
4: Collect data by following ψ
5: Update P̂ , R̂,Dt using collected data
6: Update ψ using VIEC(Dt, P̂ )

7: Update π using Value Iteration(P̂ , R̂)
8: until Dt = 0 or π is sufficiently good

4 When and How Heuristics Fail and Explicit Planning Helps

Systematic exploration strategies choose action by maximising some predefined heuristics Q̃(s, a),
which is prone to the traps as follows. Suppose at current state St and demand Dt there are actions
a1, a2 satisfying C(Dt;St, a1) < C(Dt;St, a2), so one should choose a1 over a2.

Distance traps. Let the nearest (in terms of expected number of steps to arrive) to-be-explored state
after taking a1 and a2 be s′ and s′′ respectively. If s′′ is closer to St than s′, then the uncertainty of
s′′ is less discounted than s′ in Q̃, resulting in Q̃(St, a1) < Q̃(St, a2) and thus a2 is picked.

Reward traps. Let the reward (or expected return) of taking a1 and a2 be r′ and r′′, respectively.
Then r′ < r′′ can lead to Q̃(St, a1) < Q̃(St, a2) and thus a2 is picked.

These traps can appear in any MDP and significantly reduce the efficiency of heuristic-based strategies.
To present this more clearly and intuitively, we introduce a class of MDPs called tower MDPs,
analyse the behaviours and exploration costs of several typical exploration strategies and the optimal
exploration scheme in tower MDPs, and then discuss the implication of the results.

4.1 Tower MDPs

A tower MDP of height h has two groups of states, namely upward states s1, ..., sh and downward
states s′1, ..., s

′
h. The total number of states is n = 2h. The agent always starts interaction from s1.

An example with height h = 5 is shown in Figure 1.

The transitions are deterministic in tower MDPs. Each upward state sk has an action a′ that transits
the agent to s′k (dashed arrows in Figure 1), and also an action a that transits to sk+1 if k < h (solid
arrows). Each downward state s′k is an m-armed bandit, which has m actions a1, ..., am that yield
rewards following some predefined distributions and transit the agent to s′k−1 (k > 1) or s1 (k = 1)
(collectively drawn as the double arrows in Figure 1).

To find out the optimal policy, the agent has to collect data in these bandits for information about their
reward distributions. For simplicity we assume that the initial demands at each of these m-armed
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1 1′

2 2′

3 3′

4 4′

5 5′

a a1, ..., am

a a1, ..., am

a a1, ..., am

a a1, ..., am

a′

a′

a′

a′

a′

a1, ..., am

Figure 1: A tower MDP of height h = 5. Each double arrow represents an m-armed bandit.

bandits are uniformly set to some d > 0. As for a and a′ in upward states, since there is no uncertainty
at all, their initial demands are set to 0.

4.2 Optimal exploration scheme

In a tower MDP of height h with m-armed bandits in downward states, it is easy to see that the
optimal scheme to collect d data at each arm is to repeatedly take the closed path [s1s2...shs

′
h...s

′
1s1].

Each time taking this path, the demand of one arm at every downward state is reduced by 1, and thus
it needs to be repeated md times to collect all the data required. Since the length of this path is 2h,
the optimal exploration scheme needs 2hmd = O(nmd) steps to fully satisfy the initial demands.

4.3 ε-greedy

Although ε-greedy is already well-known for its lack of efficiency, it is nevertheless interesting to see
how it performs in tower MDPs. Let the bandit in s′1 gives a reward of 1 with probability 1 on all of
its m arms, am in s′h gives reward 1010 with probability 0.01 and reward 0 otherwise, while all other
bandits/arms give zero reward. At the beginning of learning, ε-greedy does not know any of these
rewards, and thus has a 50-50 chance to choose between going to state s2 and s′1. If it chooses s2,
then it has another 50-50 chance between s3 and s′2, and so on. Therefore, the probability it arrives at
sh without visiting any of s′1, ..., s′h−1 is 0.5h−1. If it ever goes to any of state s′1, ..., s′h−1 before
arriving at sh, which happens with probability 1− 0.5h−1, it will be aware of the reward at s′1, and
thereafter be trapped to going to s′1 as often as possible. Whenever it gets back to s1, it only has
probability (0.5ε)h−1 to randomly wanders into s′h.

Therefore, the average number of steps ε-greedy spends to visit s′h once is 0.5h−1 · 2h + (1 −
0.5h−1)O( h

(0.5ε)h−1 ) = O(n2n) if ε is seen as a constant. Since it needs to visit s′h (md) times to
fully fulfil the demands, the exploration cost of ε-greedy is O(nmd 2n).

4.4 R-MAX

R-MAX [15] is one of the first systematic strategies that are proved to have polynomial sample
complexity upper bounds [2, 10]. Many exploration strategies are designed based on R-MAX and
have similar performance guarantees, including Delayed Q-learning [16], MoR-MAX [17], V-MAX
[18], and ICR [13], just to name a few.

R-MAX works as follows. When a state-action pair has a positive demand to fulfil, it is labelled
“unknown” and its estimated value Q̃(s, a) is set to Vmax := Rmax

1−γ , where Rmax is the maximum
possible reward. If its demand is already 0, then it is labelled “known” and the algorithm uses the
Bellman equation to estimate its Q̃(s, a). R-MAX always chooses the action with maximum Q̃(s, a).

In tower MDPs, all actions in downward states are initially “unknown” and thus their Q̃ = Vmax at the
beginning of learning. Let the bandits at all states except s′h give zero reward, while the bandit at s′h
gives reward Rmax = 1 with probability 0.1 and reward 0 otherwise for all arms. Under such setting,
R-MAX will not be aware of any positive rewards until s′h is explored. It can be shown recursively
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that at this stage of learning, at any upward state sk, R-MAX will choose a′ to go to s′k rather than a
that goes to sk+1. Concretely, at sh, the only choice is a′ which leads to “unknown” actions in s′h, thus
has Q̃(sh, a

′) = γVmax. At state sh−1, going to sh has value Q̃(sh−1, a) = γQ̃(sh, a
′) = γ2Vmax,

while going to s′h−1 has Q̃(sh−1, a
′) = γVmax > Q̃(sh−1, a), thus R-MAX will choose a′ at sh−1

as well. The same happens at every state from sh−1 down to s1. Since the agent starts from state s1,
R-MAX will stick to [s1s

′
1s1] until all a1, ..., am at s′1 are tried d times and become “known”.

After collecting sufficient data at state s′1, Q̃(s1, a) drops greatly from γVmax to γ4Vmax and R-MAX
starts choosing a at s1. Since Q̃ at states other than s1 and s′1 remain unchanged, s′2 is the next target
of exploration due to having the least discount in Q̃. This leads to a behaviour of taking [s1s2s

′
2s
′
1s1]

to collect at s′2, then [s1...s3s
′
3...s

′
1s1] for s′3, and so on, and finally s′h. The exploration cost of such

process is 2md+ 4md+ ...+ (2h)md = h(h+ 1)md = O(n2md).

4.5 Interval estimation

Interval estimation (IE) based exploration strategies utilise statistical methods to create confidence
intervals (CIs) for the estimated models or state/action values. CIs computed by this type of strategies
usually take the form of X(s, a)± β√

N(s,a)
, where X(s, a) is the variable being estimated, β is a

parameter, and N(s, a) is the amount of data collected at (s, a). Clearly, state-action pairs with less
data have longer CIs, and vice versa. Estimated variable X(s, a) can be transition probability, reward,
or state/action values. When choosing actions, the action with highest estimated value among all
possible MDP models that lie within the CIs is selected.

In this section we take MBIE-EB as example to show how IE-based strategies can be tricked to
make inferior decisions. In MBIE-EB, action values are estimated using Q̃(s, a) = R̃(s, a) +

γ
∑
s′ P̂ (s′|s, a) maxa′ Q̃(s′, a′), where R̃(s, a) := R̂(s, a) + β√

N(s,a)
. Since N(s, a) = 0 leads to

division by zero, in the following analysis we assume that they all start with 1. At each step the action
with highest Q̃(St, a) is executed, thus Q̃ is the heuristic used in MBIE-EB.

We start our analysis with the simplest case m = 1 where all bandits in the tower MDP is one-armed.
The expression of Q̃ can be obtained by solving the Bellman equation. Note that although max
operator is involved on all state-action pairs, the algorithm is essentially choosing between paths
[s1...sjs

′
j ...s

′
1s1] with different j. Let Q̃j be Q̃ for the j-th path, R̃j be R̃ for the bandit at s′j , and

Nj be N(s, a) at that bandit, then we have Q̃j = γj

1−γ2j

∑j
i=1 γ

j−iR̃i.

Let the actual reward of the bandits be the same as the settings used in the analysis of R-MAX. At the
beginning of learning R̃j = β/

√
Nj = β, thus Q̃j = β

1−γ (1− 1
1+γj ). Clearly Q̃1 > Q̃2 > ... > Q̃h,

thus MBIE-EB starts with path [s1s
′
1s1], which increases N1 and reduces R̃1.

The expression Q̃j = γj

1−γ2j

∑j
i=1 γ

j−iR̃i shows that Q̃j with larger j has a greater discount γj−i

on R̃i, and thus exploring s′1 reduces Q̃j less for larger j. Therefore, Q̃2 will eventually surpass Q̃1

and MBIE-EB moves to exploring s′2, then s′3, and so on, leading to an exploration behaviour similar
to R-MAX, but lingers less at the same state than R-MAX. A smaller discount factor γ leads to a
larger gap between different Q̃j , which then leads to a slower pace for MBIE-EB to move upward.
In the case where MBIE-EB only lingers exactly once at each level of the tower, it will take path
[(s1s

′
1)(s1s2s

′
2s
′
1)(s1s2s3s

′
3s
′
2s
′
1)...] until sh is reached. Thereafter Q̃h will always be the largest,

and thus the remaining demand will be fulfilled through repeating [s1...shs
′
h...s

′
1s1]. Such behaviour

has exploration cost (2 + 4 + ...+ 2h) + 2h(d− 1) = h(h+ 1) + 2h(d− 1) = O(n2 + nd) steps.
For the sake of space we skip the full derivation here2, but a γ <

√
5−1
2 ≈ 0.618 is sufficient to make

sure that MBIE-EB will perform as bad as this3.

2The proof will be given in the online supplementary material.
3Note that γ < 0.618 can effectively be achieved by inserting additional dummy states into all transitions,

e.g. if γ = 0.9, by inserting 4 states between all transitions the discount becomes 0.95 = 0.59 < 0.618.
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Strategy Exploration cost Weakness
Optimal scheme O(nmd) -
ε-greedy O(nmd 2n) Distance, reward
R-MAX O(n2md) Distance
Interval estimation O(n2m+nmd) Distance, reward

Table 1: Summary of results on tower MDPs.

In the case of m ≥ 2 where there are 2 or more arms in each bandit, R̃j in the expression of Q̃j
becomes the maximum of β√

Nj,k

where Nj,k is the number of data at the k-th arm at state s′j . As a

result, the same pattern as in m = 1 is repeated m times for the case of m ≥ 2, and thus the total
exploration cost is O(n2m+ nmd).

Note that MBIE-EB and other IE-based exploration strategies also take R̂(s, a) into consideration
when choosing actions, and thus can be further tricked by a deceiving setting of true reward R(s, a).
For example, if the setting of rewards in Section 4.3 is used, then more weight will be put into R̃1,
which gives Q̃j with smaller j more advantage due to having smaller discount on R̃1. As a result,
MBIE-EB will stay at lower levels more often and thus will have a worse exploration cost than above.

4.6 Discussion

Table 1 sums up the results of the analysis. As can be seen from the exploration cost column, ε-greedy
is clearly inferior to the rest for being exponential to the number of states n. MBIE-EB is seemingly
better than R-MAX, but since in reality it often happens that n� d, the difference between the two
can be small, and both are far worse than the optimal scheme which is only O(nmd). Such results
suggest that explicit planning for exploration can be highly beneficial when the state space is large.

It is interesting to compare the exploration costs with sample complexity bounds, a well-studied
exploration efficiency metric. R-MAX and MBIE-EB have sample complexity upper bounds O(n2m)
(ignoring other factors and logarithms) [2, 4], which is similar to the exploration costs O(n2md) on
n and m. However, a variant of R-MAX called MoR-MAX is known to have sample complexity
O(nm) [17], yet its exploration cost in tower MDPs is still O(n2md) due to having exactly the same
behaviour as R-MAX. This might explain why sample complexity is usually not a good indicator of
practical exploration efficiency.

The “distance” and “reward” in the weakness column of Table 1 refers to the distance traps and
reward traps mentioned at the beginning of Section 4. A longer distance makes ε-greedy visit states
in the higher levels via random walk less often, while for R-MAX and IE algorithms a longer distance
leads to more discount and thus a lower heuristic score Q̃ for the states in the higher levels. Reward
traps lure both ε-greedy and IE to the lower-level states, while R-MAX is more resistant to it due to
using Vmax in computing Q̃. The optimal scheme is the result of minimising undiscounted exploration
cost and is affected by neither traps.

Tower MDPs in the above analysis only use deterministic transitions for simplicity. In non-
deterministic cases, the negative impact of distance traps can be even more severe due to transition
probabilities amplifying the gaps in average distances. For example, if transiting from state s1 to s′1
by taking a′ has probability 1, while taking a at s1 has probability 0.5 to go to s2 and probability
0.5 to stay in s1, then the gap between Q̃1 and Q̃2 becomes larger and IE algorithms will take path
[s1s

′
1s1] more often, increasing the exploration cost.

MDPs in reality may not have the same structure as tower MDPs, but the distance traps and the
reward traps discussed above can happen in any types of MDPs. It is possible that in some easier
cases the difference between the optimal scheme and heuristic-based strategies is not as large as
O(nmd) vs. O(n2md), but in domains where millions of data is required for obtaining an acceptable
policy, even a difference in constant factor can be practically significant.

Remark on the reward trap. One may argue that whether or not the reward function actually acts
as a trap is problem-dependent, and there are cases where being trapped by the rewards is actually
desirable due to it leading to an early convergence to good policies.
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This is partly true, but one should also consider the fact that it is very difficult, if not impossible,
to design a reward function that simultaneously leads to both good policies and good exploration
behaviours. If the way being trapped does not coincide with the (near-)optimal policies, algorithms
like MBIE eventually deviate from the current behaviour and restart exploration. In the early stages
of learning, since the data is still lacking, such situation can occur frequently, resulting in the whole
learning process being prolonged and the total reward reduced.

Therefore, even in the case where the total reward during learning is of concern, ignoring it in the
early stages of the learning process and seeking for a more efficient exploration behaviour can be
beneficial in the long run.

5 Conclusion and Future Work

In this paper we have formulated the planning for exploration problem as solving augmented MDPs,
and provided the Bellman optimality equation for exploration costs. We have proposed a Value
Iteration for Exploration Cost (VIEC) algorithm which computes the optimal exploration scheme
given full knowledge of MDP, and a model-based RL method with planning-for-exploration com-
ponent integrated. We have presented a detailed study of exploration behaviours of several popular
exploration strategies. The analysis exposes the weakness of these heuristic-based strategies and
suggests a remarkable potential in planning for exploration.

A possible direction for future work is to find a fast and sufficiently good approximate to VIEC. As
we pointed out in Section 3.3, since the demand space is exponential in the number of states, applying
VIEC directly can be computationally expensive in practice. Techniques such as Prioritized Sweeping
[19] may help reduce the computation involved, thus make VIEC more practically useful.

Another direction is to design better heuristic-based exploration strategies that can handle the distance
and reward traps discussed in Section 4 better. Although by No Free Lunch theorem [20] no heuristic
can perform universally better than others, it is nevertheless useful to have a larger toolbox of
easy-to-compute heuristics that can cope with different types of MDPs.
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