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Abstract

This paper concerns the undetermined problem of estimating geometric transfor-
mation between image pairs. Recent methods introduce deep neural networks
to predict the controlling parameters of hand-crafted geometric transformation
models (e.g. thin-plate spline) for image registration and matching. However the
low-dimension parametric models are incapable of estimating a highly complex
geometric transform with limited flexibility to model the actual geometric deforma-
tion from image pairs. To address this issue, we present an end-to-end trainable
deep neural networks, named Arbitrary Continuous Geometric Transformation
Networks (Arbicon-Net), to directly predict the dense displacement field for pair-
wise image alignment. Arbicon-Net is generalized from training data to predict the
desired arbitrary continuous geometric transformation in a data-driven manner for
unseen new pair of images. Particularly, without imposing penalization terms, the
predicted displacement vector function is proven to be spatially continuous and
smooth. To verify the performance of Arbicon-Net, we conducted semantic align-
ment tests over both synthetic and real image dataset with various experimental
settings. The results demonstrate that Arbicon-Net outperforms the previous image
alignment techniques in identifying the image correspondences.

1 Introduction

Image registration plays a fundamental role in many computer vision applications such as medical
image processing [1], camera pose estimation [2], visual tracking [3]. Fig.1 shows the image
registration process, which includes geometric transformation estimation and image warping. To
formulate the problem of image registration, traditional methods often approach the task in two steps:
1) they firstly compute the hand-crafted image features such as SIFT and HOG [4, 5] to capture
pixel-level descriptions, 2) and then iteratively search the optimal geometric transformation model
to register a pair of images, driven by minimizing an alignment loss function. The alignment loss
is usually pre-defined as a certain type of similarity metric (e.g. correlation scores) between two
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Figure 1: Illustration of Arbicon-Net for image alignment.

sets of image feature descriptors. Previous efforts [6, 7, 8] have achieved great success in image
registration through the development of a variety of image feature descriptors and optimization
algorithms as summarized in [9]. However, they often face challenges posed by various deteriorated
image conditions such as 1) the dramatic image appearance variation (i.e. texture, color, lighting
changes and so on) between image pairs, and 2) the significant geometric structural variation between
image pairs.

The recent success of deep neural network motivates researchers [10, 11, 12, 13] to develop deep
learning techniques to combine both two steps into an end-to-end trainable network, which aims to
learn a pre-defined geometric model (i.e. affine or thin-plate spline) through the regression process
supervised by minimizing the image matching loss. With the generalization from training data, those
methods are able to predict real-time image matching that is robust to various deteriorated image
conditions. However, it is suggested by the authors [14] that pre-defined geometric transformation
models only represent a set of low dimension transformations which prevents these methods from
predicting complex geometric transformations for high-quality image registration. Moreover, the
transformations described by hand-crafted geometric models might not reveal the actual transfor-
mation required for image alignment, which leads to a sub-optimal estimation of desired geometric
transformations.

Some methods [14, 15, 16] tackle this problem by directly estimating semantic flow from pixel-
level features. These methods are more flexible to transfer the keypoints of images to semantically
correlated positions. However, since the flow field is estimated entirely by local features without
integrating global motion, local points are unable to move coherently, which consequently generates
distorted unrealistic images. In real-world applications (e.g. [1]), these flow based methods require
explicitly imposed penalization to constrain the smoothness of flow field.

To address the above mentioned issues, we propose to develop a novel geometric transformation
network, named arbitrary continuous geometric transformation networks (Arbicon-Net), to directly
predict the dense displacement field that is not formulated by pre-defined hand-crafted geometric
models. Compared with geometric model based approaches, Arbicon-Net uses deep neural network
to model geometric transformations to accommodate arbitrary complex transformations required for
the registration of image pairs. Compared with semantic flow based methods, Arbicon-Net features
an attractive property, which predicts a smooth displacement field. As shown in Fig.2, we design
an Arbicon-Net to simultaneously train three major modules, namely front-end geometric feature
extractor module, transformation descriptor encoder module and displacement field predictor module,
in an end-to-end fashion. The Arbicon-Net firstly extracts dense feature maps from input image
pairs and encodes the discriminative local feature correlation into a transformation descriptor. The
following predictor module uses the transformation descriptor to decode displacement field for image
registration.

Contributions. We have three main contributions in this paper. First, we design a novel Arbicon-Net,
which uses deep neural networks to predict dense displacement field to accommodate the arbitrary
geometric transformations according to the actual requirement for image registration. This addresses
the critical issue that the actual desired geometric transformation does not match with the one that can
be provided by pre-defined geometric model. Second, we prove that the Arbicon-Net is guaranteed to
generate spatially continuous and smooth displacement field without imposing additional penalization
term as a smoothness constraint. Finally, we show that our proposed Arbicon-Net achieved superior
performance against hand-crafted geometric transformation models with both strong and weak
supervision.
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Figure 2: Main Pipeline. Our proposed end-to-end trainable Arbicon-Net has three main compo-
nents. 1) Geometric Feature Extractor Module; 2) Transformation Descriptor Encoder Module; 3)
Displacement Field Predictor Module.

2 Related Works

Image Registration. Image registration is defined as a process to determine a smooth geometric
transformation between input image pairs, especially for 2D/3D medical images. Existing methods
search optimal geometric transformation by iteratively minimizing alignment loss, which is typically
defined by the feature similarity or hierarchically defined intensity pattern. To achieve a high-quality
image registration, researchers [17, 1, 9] have explored diverse geometric transformation models,
image similarity metrics and searching algorithms.

Non-learning based Image Correspondence Matching. The classic image correspondence match-
ing pipeline [6, 7, 8] starts by detecting key points via hand-crafted pixel-level feature descriptors
[4, 5, 18], followed by feature matching strategies to determine the optimal point correspondence
[19, 5]. Following researches have developed various hand-crafted algorithms [19, 20] to remove
incorrect matches by searching global transformation or utilizing neighbor information. While these
methods are limited in matching speed and matching performance, they have far-reaching impact on
computer vision society by imposing a standard pipeline and introducing geometric transformation
estimation as a mainstream approach for image matching problem.

Learning based Image Correspondence Matching. Inspired by the success of deep neural network,
pioneer works [21, 22, 23] propose to use pre-trained convolutional neural networks (CNNs) instead
of hand-crafted ones to extract discriminative pixel-wise feature descriptors. Following researches
develop learnable feature extraction layer [24, 25] and learnable feature matching layer [26, 27] with
differentiable image alignment loss. Han et al. [28] introduce a fully learnable image correspondence
matching strategy over region proposals. However, this method is not in an end-to-end trainable
fashion.

More recently, researchers [10, 11, 12, 13] propose end-to-end trainable network architectures for
image correspondence estimation. Specifically, these methods define a regression network to predict
the parameter of specific geometric transformation models (i.e. thin-plate spline, affine). But they are
limited by the use of low dimension geometric models and consequently less capable of performing
fine-grained image geometric transformation. Other researchers either recurrently regress pixel-
level flow field [15, 16] to approximate fine-grained image transformation or determine flow field
by neighbourhood consensus assignment [14]. However, as we stated above, they don’t take the
smoothness of displacement field into account.

3 Approach

3.1 Geometric Feature Extractor

3



Figure 3: Feature Cor-
relation.

Following the common image matching paradigms [11], our Arbicon-Net
starts with extracting geometric features from input image pair IA, IB . We
firstly leverage a share-weighted CNN to generate a representative feature
map F ∈ Rh×w×c for each input image, where at each location the feature
vector fij ∈ Rc represents local semantic information.

In order to estimate the geometric transformation of given image pairs, we
establish the local feature correlations between two feature maps by using the
normalized cosine similarity. For each local descriptor from FA, we compute
its similarity score with all local descriptors in FB to form a 4-D correlation
tensor S ∈ Rh×w×h×w as shown in Fig.3. Each element sijkl ∈ S is
computed as,

sijkl =

〈
fAij , f

B
kl

〉
||fAij ||2||fBkl ||2

(1)

where 〈·〉 denotes the inner product of two vectors, the denominator acts a normalization term to
further amplify confident matching and reduce ambiguity matching.

3.2 Transformation Descriptor Encoder

To learn a more discriminative feature correlation, we leverage 4-D convolutional neural networks
(CNNs) to refine correlation tensor S by using neighbor information [14]. The 4-D convolution layers
integrate additional neighborhood information compared with regular 2-D CNNs. Since the order
of input image pairs (IA,IB) or (IB ,IA) do not influence the result of local feature correlation, the
convolution operation is symmetrically applied, formulated as,

SC = Conv(S) + (Conv(ST ))T (2)

, where the transpose of S is computed according to sTijkl = sklij . Moreover, we normalize the learned
4-D correlation tensor s by Eq.3, where φApq = {scpq11, ..., scpqhw} and φBpq = {sc11pq, ..., schwpq}. This
normalization encourages the bilateral confidence of correlated pairs for from source image and target
image.

ŝijkl =
scijkl

max(φAij)

scijkl
max(φBkl)

scijkl (3)

Since our goal is to find a global transformation, we use a Multi-Layer Perceptron to encode
learned 4-D tensor Ŝ into a transformation descriptor dAB ∈ Rm that represents the overall image
correspondence information, as shown in Eq.4. For global geometric transformation learning,
the image correspondence information describes a geometric transformation that optimally aligns
corresponding points on two images.

dAB =MLP (Ŝ) (4)

3.3 Displacement Field Predictor

In general, the geometric transformation T for each point x in a point set X ⊂ R2 can be defined as:

T (x, v) = x+ v(x) (5)

Figure 4: Displacement Field
Predictor Module.

, where v : R2 → R2 is a “point displacement” function.

The image registration task can be formulated as a process of
determining the displacement function v. It is necessary for func-
tion v to be a continuous and smooth function according to the
Motion Coherent Theory (MCT) [29]. Fortunately, by leveraging
deep neural network architecture, we can construct the suitable
displacement function v which satisfies the continuous and smooth
characteristics.

As illustrated in Fig.4, given n 2-D points in the source image
plane, we duplicate the transformation descriptor dAB for n times.
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Each point is concatenated with the m-D global descriptor dAB . We further construct a Displacement
Field Predictor network with four successive MLPs to decode the concatenated (m+2)-D vector into
2-D displacement vector. We defined this neural network structure in Eq.6 as F(·) : Rm+2 → R2,
formulated as,

v(x) = F([x, dAB ]) (6)

,where [·] indicates concatenation operation.

Furthermore, we briefly prove the continuity and smoothness of our displacement field predictor F to
be used as our deep learning-based solution for the displacement function v.

Continuity. Since both MLP and activation function σ are continuous, the continuity of Displacement
Field Predictor network can be trivially proven as a composite of continuous functions. Since dAB

is concatenated to each point in X, this concatenation operation does not change the continuity
for displacement function v(·) = F([·, dAB ]). In contrast, commonly used learning paradigms
[1, 15, 16], which directly map high dimension feature space to 2-D displacement field, output a set of
discrete displacement vectors, while the displacements of other points need to be further interpolated.

Smoothness. After choosing a smooth function SoftPlus [30] as the activation function in our Dis-
placement Field Predictor network, it becomes trivial to estimate its complexity and smoothness since
the displacement function is a composite of a number of smooth functions (MLP and SoftPlus). In
practice, Regularization Theory (RT) [31] uses the oscillatory behavior of a function to further mea-
sure the smoothness of displacement function. The oscillatory behavior is measured by Reproducing
Kernel Hilbert Space (RKHS) [31, 32] in Eq.7.

||v||2Hm =

∫
RD

|ṽ(s)|2

g̃(s)
ds (7)

, where ṽ is the Fourier transform of the displacement function v and g̃ is a low-pass filter. In other
words, a smoother displacement function has considerably less energy in high frequency domain. We
generally express models that regress pixel-level displacement vector, including Arbicon-Net and
RTNs [16], as a composite function v in Eq.8.

v(x) = F(G(x)) : R2 → R2 (8)

Function G and F denotes the point feature encoding network and point displacement vector regres-
sion network respectively. Specifically, we have G(x) = [x, dAB ] in Arbicon-Net. In contrast, in
RTNs G generates a high-dimensional feature map by sequential CNNs. Therefore, the G in RTNs
is generally considered as a sparse and oscillate function, especially when the dimension of feature
vector (output of function G) is high, which causes the widely known “curse of dimensionality”
problem. In this section, we assume that two models have same regression network F and the input
of function F are normalized to a same scale.

According to [33], the Fourier transform of the composite function v has essentially maximum
frequency uv as

uv = uF max
x
|G′(x)| (9)

, where uF is the maximum frequency of F , which is independent of G. Assume that the outputs of
different function G are in a same scale, the oscillate function G tends to have a larger maximum value
of |G′(x)| compared with linear function in Arbicon-Net. As a result, our composite function has a
smaller uv , which is likely to have lower energy in high frequency domain, which further guarantees
a smoother displacement function.

Based on our proposed paradigm, we further constrain the smoothness of function F . Fortunately,
given the popularity of deep learning models, the recent research community has been proposing
regularization strategies, which naturally help our Displacement Field Predictor network to reduce the
risk of the oscillatory of displacement function. One simple solution is to design a proper network size.
In section 4.3, we provide empirical results to validate the smoothness of our estimated displacement
function compared with non-rigid geometric transformation models.

3.4 Loss functions

As shown in the right box of Fig.2, our designed method is designed to learn geometric transformation
under either strong supervision or weak supervision.
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For strongly-supervised loss, we have point correspondence information of x ∈ X from source
plane and y ∈ Y from target plane. Lstrong directly minimizes the pairwise L2 distance between
corresponding points in transformed image plane and target image plane, as shown in Eq.10.

Lstrong =
1

N

N∑
i=1

||T (xi)− yi||22 (10)

For weakly-supervised loss, we maximize the inner product of corresponding location in transformed
source feature map T (FA) and target feature map FB following the paradigm described in [10].
Let T (IA) and IB to be matched, we have T (IA)ij and IijB to be semantically matched, thus〈
T (fA)ij · f ijB

〉
to be maximum. We implement the loss function described in Eq.11.

Lweak = −
∑
i,j,k,l

sijkl1d(T (i,j),(k,l))<t (11)

, where 1(·) is the indicator function, d(·) denotes L1 distance.

Since our proposed network is end-to-end trainable, the Geometric Transformation Network is
optimized together with other components. It deserves noting that, since our method learns the
geometric transformation from training dataset, it is more robust to train or fine-tune our network on
real image dataset than transfer a pre-trained network from a one-fold synthesized dataset.

4 Experiments

In this section, we carried out a set of tests under different experimental settings to validate the
performance of our proposed Arbicon-Net for its capability of estimating the geometric transformation
for image dense correspondence in semantic alignment.

In section 4.1, we describe the implementation details of our Arbicon-Net to be tested in our
experiments. In section 4.2, we discuss the details of the experimental dataset preparation, evaluation
metric for experimental results and baseline models for experimental performance comparison.
In section 4.3, we validate the performance of Arbicon-Net for the estimation of the geometric
transformation for real image pairs with weakly supervised training. In section 4.4 and 4.5, we
demonstrate the performance of Arbicon-Net for the estimation of parametric and non-parametric
geometric transformation respectively, and compare to the state-of-the-art techniques.

4.1 Implementation Details

As shown in Fig.2, the Arbicon-Net is implemented based on deep neural networks with the following
architecture configuration. Arbicon-Net starts with the use of ResNet [34] (before conv4-23) with
weight pre-trained on ImageNet for local feature extraction, then followed by three 4-D convolution
kernels in Section 3.2 which are of size (3, 3, 3) with channels (10, 10, 1) respectively, and end
with four MLPs configured with the size (256, 256, 64, 2). In Arbicon-Net, we set the dimension of
translation descriptor dAB at 256 as shown in Fig.4. For weakly supervised Arbicon-Net (refer to
Section 4.3), we first train our model on synthesize dataset and fine-tune our model on training set
of PF-PASCAL using loss function in Eq.11. We refer [10] for detailed loss function and training
setup. For supervised Arbicon-Net, we use Adam optimizer for training with learning rate 0.001. The
network is implemented by PyTorch framework and ran on an Nvidia GTX 1080Ti GPU.

4.2 Dataset, Metric and Baseline

Dataset. In our experiment, three image datasets, Pascal VOC dataset [35], PF-Pascal dataset [36] and
Proposal Flow dataset [37] are used to prepare both synthesized and real image dataset for the various
tests. Pascal VOC dataset [35] contains 28,952 images. PF-Pascal contains 1351 semantically aligned
image pairs from 20 semantic category of Pascal VOC dataset with a 7:3:3 training/validation/testing
split. Proposal Flow dataset [37] with 900 image pairs from 5 categories. We randomly split the
Proposal Flow dataset into 3 folds for k-fold validation in the test. The image pair from PF-Pascal
and Proposal Flow datasets is annotated with correspondences that could be used as ground truth for
image matching performance evaluation. In order to prepare the synthesized image data, we imposed
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Methods PCK(%)
HOG+PF-LOM [36] 62.5
SCNet-AG+ [28] 72.2
CNNGeo [11] 71.9
A2Net [13] 70.9
WeakAlign [10] 75.8
WeakAlign-4D 76.5
Arbicon-Net 77.3

Table 1: Quantitative results on PF-
Pascal [36] dataset with weakly super-
vise training. Figure 5: Qualitative results on PF-Pascal [36] dataset with

weakly supervise training.

Methods MSE
CNNGeo-4D 0.0037
Arbicon-Net 0.0002

Table 2: Quantitative result on
synthesized dataset with dif-
feomorphic non-linear trans-
formation. Figure 6: Qualitative comparison on synthesized dataset with

diffeomorphic non-linear transformation.

two different types of parametric transformations, Thin plate spline (TPS) and Diffeomorphic non-
linear transformation, onto the images in Pascal VOC dataset.

Evaluation Metric. We use standard evaluation protocol, the average probability of correct keypoint
(PCK) for the evaluation of image matching in [38]. PCK classifies keypoint as correct match if the
distance between transformed source keypoint and corresponding target keypoint is within threshold
α = 0.1 of the image size [10, 28]. For the tests on the synthesized dataset, we directly use Mean
Square Error between transformed source points and corresponding target points for evaluation, as
explained in Eq.10. Additionally, we measure the smoothness of estimated displacement field by the
the second order derivatives of displacement field denoted as Esmooth following [39].

Baseline Models. In the experiments, Arbicon-Net is compared with representative methods in-
cluding HOG+PF-LOM [36], SCNet [28], CNNGeo [11], A2Net [13], WeakAlign [10]. We do not
conduct the experiment for the comparison between Arbicon-Net and other semantic flow methods
that directly identify sparse correspondence point without fully aligning two images. In addition,
since the 4-D convolution module (refer to Section 3.2) is not proposed by us, for the fair compari-
son, we replace the 2-D convolution Regression Network module with 4-D convolution module in
network structures of WeakAlign and CNNGeo, and obtain two new networks, namely WeakAlign-
4D and CNNGeo-4D. We compared Arbicon-Net to both WeakAlign-4D and CNNGeo-4D in the
experiments.

4.3 Arbicon-Net with Weakly Supervised Training

Experiment Setting: In this test, we conduct experiments to test the performance of Arbicon-
Net for the estimation of geometric transformation for image matching without using annotated
correspondence for training. In the weakly supervised setting, the Arbicon-Net and baseline models
(WeakAlign and WeakAlign-4D) are firstly pre-trained on the synthesized image dataset by TPS
transformation, and then followed by fine-tuning with weakly-supervised loss (refer to Eq.11). The
image pairs from PF-Pascal with a certain split for are used for the training and testing of the models.

Results Analysis: Table 1 compares PCK scores for Arbicon-Net and baseline models for the test
result on PF-Pascal dataset. The comparison result indicates that Arbicon-Net outperforms all baseline
methods. To better illustrate the comparison results, we further show two pair images before and
after image registration in Fig.5. The first two columns show the source and target images, the third
column illustrates the transformed source image by Arbicon-Net and the fourth column illustrates the
transformed source image by WeakAlign-4D. As we can see from the Figure, compared to baseline
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Figure 7: (a). Quantitative result on synthesized dataset with different complexity TPS transformation.
(b). Qualitative result on synthesized dataset with 6× 6 controlling points TPS transformation in the
right side.

Methods PCK(%) Esmooth

CNNGeo (aff.) 73.5 ±0.9 0.000
CNNGeo (TPS) 78.2 ±0.7 0.013
CNNGeo (aff.+TPS) 78.5 ±0.9 0.016
Arbicon-Net 84.3 ±0.6 0.008

Table 3: Quantitative comparisons on Proposal
Flow [37] dataset (Non-parametric transformation)
with strong supervision.

Figure 8: Qualitative comparisons on Proposal
Flow [37] dataset with strong supervision.

method WeakAlign-4D, Arbicon-Net is able to predict a fine-grained geometric transformation with
coherent flow motion and preservation of local geometric structural details.

In this test, Arbicon-Net and baseline models are pre-trained with TPS-based synthesized image
data, and followed by fine-tuning with weakly-supervised loss. A small learning rate is posed to
prevent model degeneration. In this way, the Arbicon-Net are trained with bias tendency to predict the
TPS-like geometric transformation for image pair. Therefore, we design the following two additional
tests for the estimation of parametric and non-parametric transformation with supervised training
settings.

4.4 Estimation of Parametric Transformation

Experiment Setting: Parametric transformation means a set of geometric transformation that can
be expressed by functions of controlling parameters. In this experiment, we prepare the synthesized
image data with two types of parametric transformations: TPS and diffeomorphic non-linear trans-
formation [17]. Then, we evaluate the performance of Arbicon-Net in estimating those parametric
transformation after training and compare to CNNGeo-4D which uses 3× 3 controlling points TPS
as its geometric model. We are particularly interested in studying how Arbicon-Net addresses the
critical issue that the actual desired geometric transformation does not match with the one which can
be provided by pre-defined geometric model. To this end, we prepared two tests: 1) we synthesize
different levels of transformed images on Pascal VOC by varying the number of TPS controlling
(increasing from 4× 4 to 6× 6) while the CNNGeo-4D remains the same TPS parameter setting,
2) we implement a diffeomorphic non-linear transformation (a non-TPS type transformation) to
synthetic data. For simplicity, we ignore the translation term to only simulate a simple 4 DoF local
affine transformation around the center of image.

Results Analysis: The experimental results of the first test are illustrated in Fig.7. As shown in Fig.7,
CNNGeo-4D (red curve) has consistently about 1.5 times higher MSE value than that of Arbicon-Net
(blue curve). When testing on synthetic data simulated by 6× 6 controlling point TPS, we visualize
the estimated transformation in red mesh to compare the performance between Arbicon-Net and
CNNGeo-4D. As we can see, Arbicon-Net clearly predicts a much more accurate displacement field
with more refined and detailed local deformation, in contrast to CNNGeo-4D. The performance
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deficiency by CNNGeo-4D highlights that mis-match between actual desired transformation and
the one provided by a pre-defined geometric model could dramatically impact on the estimation
of geometric transformation. The experimental results of the second test are shown in Table 2 and
Fig.6. As we can see from the Table, Arbicon-Net clearly outperforms the CNNGeo-4D with a great
margin. In the Fig.6, CNNGeo-4D failed to estimate the underlying geometric transformation while
our Arbicon-Net can predict a high-quality one. This observation suggests that CNNGeo-4D limits
its ability to estimate a TPS-based geometric transformation while Arbicon-Net is able to estimate
an arbitrary geometric transformation for a given image pair, which is more suitable for estimating
undetermined transformation.

4.5 Estimation of Non-parametric Transformation

Experiment Setting: In this experiment, we investigate the performance of Arbicon-Net in estima-
tion of non-parametric transformation. We consider the transformation between real image pairs
in Proposal Flow dataset to be non-parametric transformation, as there is no specific parametric
geometric model that can be generalized to describe the transformation for any real image pair. When
testing, Arbicon-Net and CNNGeo are firstly trained with real image pair supervised with annotated
correspondence labels. The parameters of Arbicon-Net and CNNGeo in this test are trained from
scratch except for fixed layers from ResNet-101. We repeat experiment three times. Each time we
select one-fold as testing set and the other folds as training set. In this test, we use regular 2D-Conv
to replace 4D-Conv in Arbicon-Net for fairness.

Results Analysis: Table 3 lists the PCK scores and Esmooth as the comparison results between
Arbicon-Net and CNNGeo with different geometric model settings. Among these models, our
Arbicon-Net achieves better estimation of geometric transformation based on a higher PCK score.
This suggests that our Arbicon-Net is more suitable for the estimation of geometric transformation
for image pairs in real applications. In addition, Arbicon-Net produces even smoother displacement
function with smaller Esmooth value compared with non-rigid geometric transformation model
TPS. Fig.8 shows two pairs of images pre- and post-registration (warping). We can clearly see
from the figure that Arbicon-Net is able to smoothly transform the source image to the target one
without introducing significant image distortion, as shown in third column. In contrast, the CNNGeo
significantly deteriorate the source image after warping. This further validates that Arbicon-Net can
predict a spatially continuous and smooth displacement field as one of our key contributions in this
paper.

5 Conclusion

We present a novel Arbicon-Net for image registration, which directly learns a dense displacement
field between input image pairs. Compared with hand-crafted geometric models, our network is
more capable in modeling arbitrary high dimension transformation function. The network structure
preserves the predicted displacement function to be spatial continuous and smooth and thus removes
the limitation of adding penalization term in training. The experiments in semantic alignment task
demonstrate the effectiveness of our approach.

6 Acknowledgement

We would like to thank the reviewers for their thoughtful comments and efforts towards improving
our manuscript. This work is partially supported by ADEK Grant (No. AARE-18150).

9



References
[1] Guha Balakrishnan, Amy Zhao, Mert R Sabuncu, John Guttag, and Adrian V Dalca. An unsupervised

learning model for deformable medical image registration. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 9252–9260, 2018.

[2] Enliang Zheng and Changchang Wu. Structure from motion using structure-less resection. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2075–2083, 2015.

[3] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. Dtam: Dense tracking and mapping in
real-time. In 2011 international conference on computer vision, pages 2320–2327. IEEE, 2011.

[4] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In international
Conference on computer vision & Pattern Recognition (CVPR’05), volume 1, pages 886–893. IEEE
Computer Society, 2005.

[5] David G Lowe et al. Object recognition from local scale-invariant features. In iccv, volume 99, pages
1150–1157, 1999.

[6] Alexander C Berg, Tamara L Berg, and Jitendra Malik. Shape matching and object recognition using low
distortion correspondences. In CVPR (1), pages 26–33. Citeseer, 2005.

[7] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE transactions on
pattern analysis and machine intelligence, 28(4):594–611, 2006.

[8] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense correspondence across scenes and its
applications. IEEE transactions on pattern analysis and machine intelligence, 33(5):978–994, 2010.

[9] Barbara Zitova and Jan Flusser. Image registration methods: a survey. Image and vision computing,
21(11):977–1000, 2003.
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