
We thank the reviewers for their insightful comments and constructive feedback. As the reviewers mentioned, our work1

shows the following strengths. (1) The theoretical analysis is “profound and novel” [R3,R4,R5]. (2) Experiments are2

designed “thoroughly” and “carefully” which “verifies the feasibility” [R3,R4]. (3) The paper is “well-written and3

organized” [R3,R4]. We will answer the major points below and address all remaining ones in the final version.4

[R3]: “For eq. (3) (4) (5), the first item on the right-hand side,
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nj

?”5

• This depends on how C(F ) is defined. If it is defined to be the Rademacher complexity, then the former is correct.6

[R3]: I suggest the authors to polish up the Figure 1.7

• Thanks for the suggestion! We’ll update with a better one for the final version.8

[R3]: "“Hinge loss (HG) does not work well with 100 classes”, what you mean by not work well?"9

•When trained on CIFAR-100, Hinge loss seems to suffer from optimization issues — the training accuracy is at most10

about 80%. Thus we didn’t report the test accuracy because the failure here is of a different nature.11

[R4,R6]: “It is unclear to me why the loss function (10) enforces the desired margin in (9).”; “Provide a strong12

justification for the equation (10)”13

• The Hinge loss in (10) achieves its minimum value zero only if the margin is at least ∆y. Recall that the margin is14

defined to be γ = zy −maxj 6=y zj . Therefore, Hinge loss = max{∆y − γ, 0} = 0 if and only if γ ≥ ∆j . Hinge loss is15

a standard loss that encourages margins in the context of SVM.1 We extend it to allow label-dependent margins.16

[R4]: “I wonder what exactly is showing in Figure 2.”17

•We visualize the distributions of the last-but-one layer of the neural network, which are referred to as the features.18

Please refer to the details in L230-L235. We will clarify more in the final version.19

[R4,R6]: “If the second stage does not move the weight by much, shouldn’t the ERM with LDAM loss work well20

enough?”; “Provide a better why DRW is important?”21

•We believe that the second stage with smaller learning rate serves as a fine-tuning-like process to capture sophisticated22

details in each class. Thus in the second stage, emphasizing rare examples are important, because without it, the training23

accuracies for all the classes can not be approximately 100%. (Relatively smaller movements in the second stage could24

also change the performance by more than a few percents.) With the initial large learning rate in the first stage, by25

contrast, the network learns the shared patterns/features shared across all tasks, and therefore it would be better to train26

with all the examples with uniform weights. Such phenomenon/intuitions were also observed2 and justified in recent27

works3. We realized this from the ablation study in Fig. 6 in Appendix, which shows that the features learned in the28

first stage with ERM are better than those with re-weighting.29

[R5]: "How to decide the hyperparameter C? How is the LDAM-HG-DRS in Table.1 implemented?"30

•We tune C as a hyper-parameter for each dataset. In particular, we use C = 0.5 for all CIFAR-10 and CIFAR-10031

experiments, and C = 0.3 for all iNaturalist experiments. Regarding the LDAM-HG-DRS implementation, we follow32

Eq. (10) to implement Hinge loss. Here DRS means the delayed re-sampling strategy.33

[R5]: "CB+Softmax and LDAM seem to be quite similar"; “it seems that the main boost of performance is stemmed34

from the DRW (deferred re-weighting)”; additional baseline CB+DRW.35

•We’d like first to clarify that CB only re-weights the losses, and therefore is a re-weighting scheme more similar to36

vanilla re-weighting than to LDAM (which is a new loss). DRW, a deferred re-weighting scheme that we proposed, is37

an improved version of CB or vanilla re-weighting, and is orthogonal to LDAM. In Tab. 2, we see that either using38

LDAM alone (4th row), or DRW alone (3rd row), on top of the ERM baseline, can outperform prior work. LDAM alone39

(3.5% improvement) is slightly more useful than DRW alone (2.6%), and together, they give 6.8% improvement. Thus40

we don’t agree that the main boost stems from DRW. We found CB+DRW does not outperform DRW alone, which also41

suggests that DRW is a better re-weighting scheme.42

[R6]: Test the proposed method for more general machine learning tasks.43

• Thank you for your suggestion. We selected these datasets (1) to compare with related works, (2) because they are44

challenging, (3) because they are representative of ubiquitous real-world dataset imbalance issues. Nonetheless, we add45

one additional sentiment analysis experiment on the Large Movie Review (IMDB) Dataset, a popular and standard46

task in NLP. We manually created an imbalanced training set by removing 90% of negative reviews. We train a 2-layer47

bidirectional LSTM with Adam optimizer. Test accuracy of different methods are listed as follows: ERM: 63.18,48

Re-weight: 76.34, Re-sample: 73.50, LDAM: 82.16. Thus our conclusions hold on other tasks. We will add this result49

to the final version of the paper.50

1Wikipedia contributors. "Hinge loss." Wikipedia, The Free Encyclopedia.
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