We thank the reviewers for all their remarks and comments. We address these remarks separately below. 1

Reviewer 1: Our bounds indeed require the horizon T to be bigger than the number of arms K. We study an 2

intermediate confidence regime which is non-asymptotic but in which the algorithm still gets to access several samples 3 per arm. The setting where the algorithm should not even pull each arm once (due to a strong structure and low

4 confidence level) is a challenge that we do not address. 5

You mention that the lower bounds we use are difficult to compare to the bounds obtained in other works and we agree 6 that their non-explicit nature can have that effect. For best-arm with Gaussian arms with variance σ^2 , it is shown in [13] that the lower bound T^* such that $\liminf_{\delta \to 0} \frac{\mathbb{E}[\tau_{\delta}]}{\log(1/\delta)} \ge T^*$ verifies $\sum_{k \neq *} \frac{2\sigma^2}{\Delta_k^2} \le T^* \le 2\sum_{k \neq *} \frac{2\sigma^2}{\Delta_k^2}$. On the upper bound side, we can divide the existing work in two categories: papers that get only asymptotic optimality, like [13, 7

8

9

20, 24]; and papers that get finite confidence guarantees but not asymptotically optimal (with the right multiplicative 10

factors), like [5, 16]. In the second case, more effort is spent towards making the other terms of the bound small. For 11 the Gaussian top-k arms problem, the difference between the lower bound we use and the gap-based one found for

12 example in [Chen et al., Nearly Instance Optimal Sample Complexity Bounds for Top-k Arm Selection, 2017] is also a 13

multiplicative factor. For non-Gaussian arms, the difference can be much larger. See [13, section 2.2] for a discussion. 14

Reviewer 2: We disagree with your assessment of the contributions of the paper, expressed in that sentence: "This 15 paper adds a link between the principle of optimism in the face of uncertainty (widely used in regret minimization 16 setting) and pure exploration problems, and proposes algorithms based on this principle." Our design exploits a game point of view through a combination of two adversarial algorithms playing against each other, one of which deals with 18 uncertainty by using optimism. The optimism is more akin to a trick than the main feature. The main contribution is 19 to show how the interaction of the two players iteratively solve the lower bound problem to tend towards the optimal sampling behaviour (and complexity). No other stochastic bandit paper uses a similar design. The reference [9] notes that the lower bound can be seen as a game and uses that observation to derive lower bounds, but that paper does not use this hindsight to form algorithms (their algorithm is a slightly modified track-and-stop).

For the experimental part, we are inclined towards keeping it fairly light in the main part of the paper due to space 24 constraints. We can however add comparisons to more algorithms in the appendix. As our algorithm can deal with 25 any exploration problem on which one of the required oracles can be implemented, and not only best-arm problems, 26 we compared to similar general algorithms. We will include the algorithm of https://arxiv.org/abs/1602.08448 in the 27

experiments of appendix G. 28

17

20

21

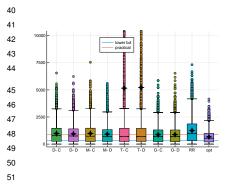
22

23

We agree that the computational complexity claims would be better supported with data, which we will include. To give 29 a quick idea: on best-arm identification (Figure 1a, section 4), taking the time per iteration of uniform sampling as 30 1, the algorithms D, M, T and O have iteration times of 6.4, 3.8, 121 and 526 respectively. Our new algorithm D has 31 same order of computational complexity as M [24] up to an overhead due to the computation of the optimism terms. 32 Track-and-Stop (T) is slower and our new algorithm O is again slower, as predicted (it uses a more complicated oracle). 33

On the thresholding task, all oracles are closed form and all algorithms have similar iteration times (6.1, 5.1, 7.1, 5.2). 34

Reviewer 3: We doubt that a meaningful moderate confidence bound can be derived from [13], for reasonable 35 confidence δ . Their continuity based argument introduces a quantity $\varepsilon > 0$ and the forced exploration leads to a bound 36 that depends on ε and the parameters of the problem through polynomial terms with high exponents (for example $1/\varepsilon^4$). 37 ε must then be chosen as a function of δ to obtain a moderate confidence bound. Our best efforts lead to a bound with a 38 lower order term proportional to $(\log(1/\delta))^{11/12}$, which is $o(\log(1/\delta))$ but potentially still big for moderate confidence. 39



We evaluated track-and-stop (TaS) experimentally in the paper, and the experiments (in particular Figure 1b and Figures 5) show that while TaS is asymptotically optimal, the empirical performance may be poor, even for $\delta = e^{-20}$ On the left, we reproduced Figure 1b with larger markers for the mean (crosses). TaS (called T-C and T-D) performs much worse that even uniform sampling.

About [Chen et al., 2017]: we indeed should have discussed it since it addresses the same problem. We now discuss it and will include this comparison in the paper. Their algorithm has several features in common with TaS: a phase of forced exploration restricts the candidates answers to only 1 (through the use of a confidence region) and forms estimates of the parameters; the algorithm then verifies that it is indeed the correct answer up to the required confidence level by using a plug-in estimate of the solution to the lower bound problem.

Their definition of "optimal" is not the same as ours. Our algorithm verifies $\lim_{\delta \to 0} \mathbb{E}[\tau_{\delta}] / \log(1/\delta) = T^*$, where T^* 52 is the lower bound complexity. They show a $256T^*$ bound. Their algorithm's complexity is optimal in the sense that it 53 is proportional to T^* . Ours matches the lower bound with the right multiplicative constant. 54