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Abstract

Tensor-network techniques have recently proven useful in machine learning, both
as a tool for the formulation of new learning algorithms and for enhancing the
mathematical understanding of existing methods. Inspired by these developments,
and the natural correspondence between tensor networks and probabilistic graphical
models, we provide a rigorous analysis of the expressive power of various tensor-
network factorizations of discrete multivariate probability distributions. These
factorizations include non-negative tensor-trains/MPS, which are in correspon-
dence with hidden Markov models, and Born machines, which are naturally related
to the probabilistic interpretation of quantum circuits. When used to model proba-
bility distributions, they exhibit tractable likelihoods and admit efficient learning
algorithms. Interestingly, we prove that there exist probability distributions for
which there are unbounded separations between the resource requirements of some
of these tensor-network factorizations. Of particular interest, using complex instead
of real tensors can lead to an arbitrarily large reduction in the number of parameters
of the network. Additionally, we introduce locally purified states (LPS), a new
factorization inspired by techniques for the simulation of quantum systems, with
provably better expressive power than all other representations considered. The
ramifications of this result are explored through numerical experiments.

1 Introduction

Many problems in diverse areas of computer science and physics involve constructing efficient
representations of high-dimensional functions. Neural networks are a particular example of such
representations that have enjoyed great empirical success, and much effort has been dedicated to
understanding their expressive power - i.e. the set of functions that they can efficiently represent.
Analogously, tensor networks are a class of powerful representations of high-dimensional arrays
(tensors), for which a variety of algorithms and methods have been developed. Examples of such
tensor networks are tensor trains/matrix product states (MPS) [1, 2] or the hierarchical Tucker
decomposition [3, 4], which have found application in data compression [5–7], the simulation of
physical systems [8–10] and the design of machine learning algorithms [11–16]. In addition to
their use in numerical algorithms, tensor networks enjoy a rich analytical understanding which has
facilitated their use as a tool for obtaining rigorous results on the expressive power of deep learning
models [17–22], and fundamental insights into the structure of quantum mechanical systems [23].

In the context of probabilistic modeling, tensor networks have been shown to be in natural corre-
spondence with probabilistic graphical models [24–29], as well as with Sum-Product Networks and
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Arithmetic Circuits [17, 30, 31]. Motivated by this correspondence, and with the goal of enhancing
the toolbox for deriving analytical results on the properties of machine learning algorithms, we
study the expressive power of various tensor-network models of discrete multivariate probability
distributions. The models we consider, defined in Section 2, fall into two main categories:

• Non-negative tensor networks, which decompose a probability mass function as a network
of non-negative tensors [32], as in a probabilistic graphical model [33].

• Born machines (BM), which model a probability mass function as the absolute value
squared of a real or complex function, which is itself represented as a network of real or
complex tensors. While Born machines have been previously employed for probabilistic
modeling [34–40], they have additional potential applications in the context of quantum
machine learning [41–44], since they arise naturally from the probabilistic interpretation of
quantum mechanics.

These models are considered precisely because they represent non-negative tensors by construction.
In this work we focus on tensor networks which are based on tensor-trains/MPS and generaliza-
tions thereof, motivated by the fact that these have tractable likelihood, and thus efficient learning
algorithms, while lending themselves to a rigorous theoretical analysis. In this setting non-negative
tensor networks encompass hidden Markov models (HMM), while Born machines include models
that arise from local quantum circuits of fixed depth. Our results also apply to tensor networks with
a tree structure, and as such can be seen as a more general comparison of the difference between
non-negative tensor networks and Born machines.

The main result of this work is a characterization of the expressive power of these tensor networks.
Interestingly, we prove that there exist families of probability distributions for which there are
unbounded separations between the resource requirements of some of these tensor-network factoriza-
tions. This allows us to show that neither HMM nor Born machines should be preferred to each other
in general. Moreover, we prove that using complex instead of real tensors can sometimes lead to an
arbitrarily large reduction in the number of parameters of the network.

Furthermore, we introduce a new tensor-network model of discrete multivariate probability distri-
butions with provably better expressive power than the previously introduced models. This tensor
network, which retains an efficient learning algorithm, is referred to as a locally purified state (LPS)
due to its origin in the classical simulation of quantum systems [45–48]. We demonstrate through
numerical experiments on both random probability distributions as well as realistic data sets that our
theoretical findings are relevant in practice - i.e. that LPS should be considered over HMM and Born
machines for probabilistic modeling.

This paper is structured as follows: The models we consider are introduced in Section 2. Their
relation with HMM and quantum circuits is made explicit in Section 3. The main results on expressive
power are presented in Section 4. Section 5 then introduces learning algorithms for these tensor
networks, and the results of numerical experiments are provided in Section 6.

2 Tensor-network models of probability distributions

Consider a multivariate probability mass function P (X1, . . . , XN ) over N discrete random variables
{Xi} taking values in {1, . . . , d}. This probability mass function is naturally represented as a multi-
dimensional array, or tensor, with N indices, each of which can take d values. As such, we use the
notation P to refer simultaneously to both the probability mass function and the equivalent tensor
representation. More specifically, for each configuration X1, . . . , XN the tensor element PX1,...,XN

stores the probability P (X1, . . . , XN ). Note that as P is a representation of a probability mass
function, it is a tensor with non-negative entries summing to one.

Here we are interested in the case whereN is large. Since the number of elements of this tensor scales
exponentially with N , it is quickly impossible to store. In cases where there is some structure to the
variables, one may use a compact representation of P which exploits this structure, such as Bayesian
networks or Markov random fields defined on a graph. In the following we consider models, known
as tensor networks, in which a tensor T is factorized into the contraction of multiple smaller tensors.
As long as T is non-negative, one can model P as P = T/ZT , where ZT =

∑
X1,...,XN

TX1,...,XN

is a normalization factor. For all tensor networks considered in this work, this normalization factor
can be evaluated efficiently, as explained in Section 5.
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In particular, we define the following tensor networks, in both algebraic and graphical notation. In
the diagrams each box represents a tensor and lines emanating from these boxes represent tensor
indices. Connecting two lines implies a contraction, which is a summation over the connected index.

1. Tensor-train/matrix product state (MPSF): A tensor T , with N d-dimensional indices,
admits an MPSF representation of TT-rankF r when the entries of T can be written as

TX1,...,XN
=

r∑
{αi=1}

Aα1

1,X1
Aα1,α2

2,X2
· · ·AαN−2,αN−1

N−1,XN−1
A
αN−1

N,XN
, (1)

X1 XN

T = A1 AN

X1 XN

α1 α2 αN−1

, (2)

where A1 and AN are d× r matrices, and Ai are order-3 tensors of dimension d× r × r,
with elements in F ∈ {R≥0,R,C}. The indices αi of these constituent tensors run from 1
to r and are contracted (summed over) to construct T .

2. Born machine (BMF): A tensor T , with N d-dimensional indices, admits a BMF represen-
tation of Born-rankF r when the entries of T can be written as

TX1,...,XN
=

∣∣∣∣∣∣
r∑

{αi=1}

Aα1

1,X1
Aα1,α2

2,X2
· · ·AαN−2,αN−1

N−1,XN−1
A
αN−1

N,XN

∣∣∣∣∣∣
2

, (3)

X1 XN

T =
A1 AN

A1 AN

X1 XN

X1 XN

α1 α2 αN−1

α′1 α′2 α′N−1

, (4)

with elements of the constituent tensors Ai in F ∈ {R,C}, i.e., when T admits a representa-
tion as the absolute-value squared (element-wise) of an MPSF of TT-rankF r.

3. Locally purified state (LPSF): A tensor T , with N d-dimensional indices, admits an LPSF
representation of puri-rankF r and purification dimension µ when the entries of T can be
written as

TX1,...,XN
=

r∑
{αi,α′i=1}

µ∑
{βi=1}

Aβ1,α1

1,X1
A
β1,α′1
1,X1

Aβ2,α1,α2

2,X2
A
β2,α′1,α

′
2

2,X2
· · ·AβN ,αN−1

N,XN
A
βN ,α′N−1

N,XN
,

(5)

X1 XN

T =

A1 AN

A1 AN

X1 XN

X1 XN

α1 α2 αN−1

α′1 α′2 α′N−1

β1 β2 βN , (6)

where A1 and AN are order-3 tensors of dimension d× µ× r and Ai are order-4 tensors
of dimension d× µ× r × r. The indices αi run from 1 to r, the indices βi run from 1 to
µ, and both are contracted to construct T . Without loss of generality we can consider only
µ ≤ rd2.

Note that all the representations defined above yield non-negative tensors by construction, except for
MPSR/C. In this work, we consider only the subset of MPSR/C which represent non-negative tensors.

Given a non-negative tensor T we define the TT-rankF (Born-rankF) of T as the minimal r such that
T admits an MPSF (BMF) representation of TT-rankF (Born-rankF) r. We define the puri-rankF of T
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as the minimal r such that T admits an LPSF representation of puri-rankF r, for some purification
dimension µ. We note that if we consider tensors T with 2 d-dimensional indices (i.e., matrices) then
the TT-rankR≥0

is the non-negative rank, i.e., the smallest k such that T can be written as T = AB
with A being d× k and B being k× d matrices with real non-negative entries. The TT-rankR/C is the
conventional matrix rank, the Born-rankR (Born-rankC) is the real (complex) Hadamard square-root
rank, i.e., the minimal rank of a real (complex) entry-wise square root of T , and finally the puri-rankR
(puri-rankC) is the real (complex) positive semidefinite rank [49].

Table 1: Summary of notations for the different tensor-network representations and their ranks.

Tensor representation MPSR≥0 MPSR/C BMR/C LPSR/C
Tensor rank TT-rankR≥0 TT-rankR/C Born-rankR/C puri-rankR/C
Matrix rank [49] rank+ rank rankR/C√ rankR/C,psd

For a given rank and a given tensor network, there is a set of non-negative tensors that can be exactly
represented, and as the rank is increased, this set grows. In the limit of arbitrarily large rank, all tensor
networks we consider can represent any non-negative tensor. This work is concerned with the relative
expressive power of these different tensor-network representations, i.e. how do these representable
sets compare for different tensor networks. This will be characterized in Section 4 in terms of the
different ranks needed by different tensor networks to represent a non-negative tensor.

3 Relationship to hidden Markov models and quantum circuits

In order to provide context for the factorizations introduced in Section 2, we show here how they are
related to other representations of probability distributions based on probabilistic graphical models
and quantum circuits. In particular, we show that there is a mapping between hidden Markov models
with constant number of hidden units per variable and MPSR≥0 with constant TT-rankR≥0, as well as
between local quantum circuits of fixed depth and Born machines of constant Born-rankC. These
relations imply that results on the expressive power of the former directly provide results on the
expressive power of the latter.

3.1 Hidden Markov models are non-negative matrix product states

Consider a hidden Markov model (HMM) with observed variables {Xi} taking values in {1, . . . , d}
and hidden variables {Hi} taking values in {1, . . . , r} (Fig. 1). The probability of the observed
variables may be expressed as

P (X1, . . . , XN ) =
∑

H1,...,HN

P (X1|H1)

N∏
i=2

P (Hi|Hi−1)P (Xi|Hi). (7)

Notice that P (Hi|Hi−1) and P (Xi|Hi) are matrices with non-negative elements, as depicted in the
factor graph in the central diagram of Fig. 1. Now define the tensors Aj1,l = P (Xi = l|H1 = j), and
Ajki,l = P (Hi = k|Hi−1 = j)P (Xi = l|Hi = k). Then the MPS with TT-rankR≥0

= r defined with
tensors Ai defines the same probability distribution on the observed variables as the HMM.

Figure 1: Mapping between a HMM and a non-negative MPS.

Conversely, given an MPSR≥0 with TT-rankR≥0
= r, there exists an HMM, with hidden variables

of dimension r′ ≤ min(dr, r2), defining the same probability mass function, as shown in the
supplementary material. We note also that by using a different graph for the HMM, it is possible to
construct an equivalent HMM with hidden variables of dimension r [28, 29]. As such, any results on
expressivity derived for MPSR≥0

hold also for HMM.

4



3.2 Quantum circuits are Born machines or locally purified states

An introductory presentation of the details of the connection between quantum circuits and Born
machines is contained in the supplementary material. There, we show that local quantum circuits
of fixed depth D allow sampling from the probability mass function of N discrete d-dimensional
random variables {Xi} which is given by the modulus squared of the amplitudes defined by the
quantum circuit. For local quantum circuits of fixed depth D, these can be written as an MPS of
TT-rankC = dD+1. Therefore quantum circuits of fixed depth are in correspondence with Born
machines of constant Born-rankC, and any results on the expressive power of Born machines hold
also for local quantum circuits, when considered as probabilistic models.

Furthermore, quantum circuits that include alternating ancillary (or “hidden”) and visible variables
allow to sample from a probability distribution that can be expressed as a LPS. As such, this
correspondence implies that any results on the expressive power of LPS hold also for local quantum
circuits with alternating visible and hidden variables.

4 Expressive power of tensor-network representations

In this section we present various relationships between the expressive power of all representations,
which constitute the primary results of this work. The proofs of the propositions in this section can
be found in the supplementary material.

Figure 2: Representation of the sets of non-negative tensors that admit a given tensor-network
factorization. In this figure we fix the different ranks of the different tensor networks to be equal.

For a given rank, there is a set of non-negative tensors that can be exactly represented by a given
tensor network. These sets are represented in Fig. 2 for the case in which the ranks of the tensor
networks are equal. When one set is included in another, it means that for every non-negative tensor,
the rank of one of the tensor-network factorizations is always greater than or equal to the rank of the
other factorization. The inclusion relationships between these sets can therefore be characterized in
terms of inequalities between the ranks, as detailed in Proposition 1.
Proposition 1. For all non-negative tensors TT-rankR≥0

≥ TT-rankR, Born-rankR ≥ Born-rankC,
Born-rankR ≥ puri-rankR, Born-rankC ≥ puri-rankC, puri-rankR ≥ puri-rankC, TT-rankR≥0

≥
puri-rankR, TT-rankR = TT-rankC.

Next, as detailed in Proposition 2, and summarized in Table 2, we continue by showing that all the
inequalities of Proposition 1 can in fact be strict, and that for all other pairs of representations there
exist probability distributions showing that neither rank can always be lower than the other. This
shows that neither of the two corresponding sets of tensors can be included in the other. The main
new result is the introduction of a matrix with non-negative rank strictly smaller than its complex
Hadamard square-root rank, i.e. TT-rankR≥0

< Born-rankC.
Proposition 2. The ranks of all introduced tensor-network representations satisfy the properties
contained in Table 2. Specifically, denoting by rrow (rcolumn) the rank appearing in the row (column),
< indicates that there exists a tensor satisfying rrow < rcolumn and <,> indicates that there exists
both a tensor satisfying rrow < rcolumn and another tensor satisfying rcolumn > rrow.

We now answer the question: By how much do we need to increase the rank of a tensor network such
that the set of tensors it can represent includes the set of tensors that can be represented by a different
tensor network of a different rank? More specifically, consider a tensor that has rank r according to
one representation and rank r′ according to another. Can we bound the rank r as a function of the
rank r′ only? The results of Proposition 3, presented via Table 3, indicate that in many cases there is
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Table 2: Results of Proposition 2

TT-rankR TT-rankR≥0
Born-rankR Born-rankC puri-rankR puri-rankC

TT-rankR = < <,> <,> <,> <,>
TT-rankR≥0

> = <,> <,> > >
Born-rankR <,> <,> = > > >
Born-rankC <,> <,> < = <,> >
puri-rankR <,> < < <,> = >
puri-rankC <,> < < < < =

no such function - i.e. there exists a family of non-negative tensors, describing a family of probability
distributions over N binary variables, with the property that as N goes to infinity r′ remains constant,
while r also goes to infinity.
Proposition 3. The ranks of all introduced tensor-network representations satisfy the relationships
without asterisk contained in Table 3. A function g(x) denotes that for all non-negative tensors
rrow ≤ g(rcolumn). “No” indicates that there exists a family of probability distributions of increasing
N with d = 2 and rcolumn constant, but such that rrow goes to infinity, i.e. that no such function can
exist.

Table 3: Results of Proposition 3.

TT-rankR TT-rankR≥0
Born-rankR Born-rankC puri-rankR puri-rankC

TT-rankR = ≤ x ≤ x2 ≤ x2 ≤ x2 ≤ x2
TT-rankR≥0

No = No No No No
Born-rankR No No = No No No
Born-rankC No No∗ ≤ x = No∗ No∗
puri-rankR No ≤ x ≤ x ≤ 2x = ≤ 2x
puri-rankC No ≤ x ≤ x ≤ x ≤ x =

We conjecture that the relationships with an asterisk in Table 3 also hold. The existence of a family
of matrices with constant non-negative rank but unbounded complex Hadamard square-root rank,
together with the techniques introduced in the supplementary material, would provide a proof of these
conjectured results. Proposition 3 indicates the existence of various families of non-negative tensors
for which the rank of one representation remains constant, while the rank of another representation
grows with the number of binary variables, however, the rate of this growth is not given. The
following propositions provide details of the asymptotic growth of these ranks.
Proposition 4 ([46]). There exists a family of non-negative tensors over 2N binary variables and
constant TT-rankR=3 that have puri-rankC = Ω(N), and hence also puri-rankC, Born-rankR/C and
TT-rankR≥0

≥ Ω(N).
Proposition 5. There exists a family of non-negative tensors over 2N binary variables and constant
TT-rankR≥0

=2 (and hence also puri-rankR/C = 2) that have Born-rankR ≥ π(2N+1), where π(x) is
the number of prime numbers up to x, which asymptotically satisfies π(x) ∼ x/ log(x).
Proposition 6. There exists a family of non-negative tensors over 2N binary variables and constant
Born-rankR=2 (and hence also constant Born-rankC and puri-rankR/C) that have TT-rankR≥0

≥ N .
Proposition 7. There exists a family of non-negative tensors over 2N binary variables and constant
Born-rankC=2 that have Born-rankR ≥ N .

Some comments and observations which may aid in facilitating an intuitive understanding of these
results are as follows: Cancellations between negative contributions allow an MPSR to represent a
non-negative tensor while having lower rank than an MPSR≥0

(this separation can also be derived
from the separation between Arithmetic Circuits and Monotone Arithmetic Circuits [50]). The
separations between MPSR≥0

and BMR/C are due to the difference of rank between probability
distributions and their real or complex square roots. Finally, the difference between real and complex
BM is due to the way in which real and imaginary elements are combined through the modulus
squared, and this is illustrated well by the fact that real LPS of purification dimension 2 include
complex BM.
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As the techniques via which the results of Proposition 3 have been obtained are of interest, we provide
a sketch of the proof for all “No” entries here . Assume that for a given pair of representations there
exists a family of non-negative matrices with the property that the rank rcolumn of one representation
remains constant as a function of matrix dimension, while the rank rrow of the other representation
grows. Now, consider such a matrix M of dimension 2N × 2N . The first step is to show that M can
be unfolded into a tensor network of constant rank rcolumn, for 2N binary variables, such that M is a
reshaping of the central bipartition of this tensor as

M =

2N 2N

=

2N 2N

=

N N

. (8)

If the rank rrow of matrix M is large, the rank rrow of the corresponding tensor-network representation
of the unfolded tensor will also be large. While above unfolding requires a particular matrix
dimension, it is in fact possible to write any N ×N matrix M as a submatrix of a 2N × 2N matrix, to
which the above unfolding strategy can then be used as a tool for leveraging matrix rank separations
[51, 52, 49, 53] into tensor rank separations [54].

Finally, in order to discuss the significance of these results, note firstly that the TT-rankR can be
arbitrarily smaller than all other ranks, however, optimizing a real MPS to represent a probability
distribution presents a problem since it is not clear how to impose positivity of the contracted tensor
network [25, 48]. All other separations are relevant in practice since, as discussed in the following
section, they apply to tensor networks that can be trained to represent probability distributions over
many variables. Taken together, these results then show that LPS should be preferred over MPSR≥0

or BM, since the puri-ranks will always be lower bounded compared to the other ranks. Additionally,
complex BM should also be preferred to real BM as they can lead to an arbitrarily large reduction
in the number of parameters of the tensor network. Note that because of the structure of the tensor
networks we consider, these results also apply to more general tensor factorizations relying on a
tree structure of the tensor network. How these results are affected if one considers approximate as
opposed to exact representations remains an interesting open problem.

5 Learning algorithms

While the primary results of this work concern the expressive power of different tensor-network
representations of probability distributions, these results are relevant in practice since MPSR≥0

,
BMR/C and LPSR/C admit efficient learning algorithms, as shown in this section.

First, given samples {xi = (Xi
1, . . . , X

i
N )} from a discrete multivariate distribution, they can be

trained to approximate this distribution through maximum likelihood estimation. Specifically, this
can be done by minimizing the negative log-likelihood,

L = −
∑
i

log
Txi

ZT
, with derivatives ∂wL = −

∑
i

∂wTxi

Txi

− ∂wZT
ZT

, (9)

where i indexes training samples and Txi
is given by the contraction of one of the tensor-network

models we have introduced. The negative log-likelihood can be minimized using a mini-batch
gradient-descent algorithm. Note that when using complex tensors, the derivatives are replaced by
Wirtinger derivatives with respect to the conjugated tensor elements. This algorithm requires the
computation of Txi

and ∂wTxi
for a training instance, as well as of the normalization ZT and its

derivative ∂wZT . We first focus on the computation of these quantities for LPS. Since BM are LPS
of purification dimension µ = 1, they can directly use the same algorithm [34]. For an LPSC of
puri-rank r, the normalization ZT can be computed by contracting the tensor network

ZT =
A1

A1

, with derivatives
∂ZT

∂Āj,k,li,m

=
Ai

j
k l
m

Ei−1 Fi+1 , (10)

where the tensors Ei and Fi are intermediate tensors obtained by contracting the left part and right
part of the tensor network corresponding to the norm. All these computations can be performed
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in O(dµr3N) operations, and a similar contraction with fixed values for Xi is used for computing
Txi

and its derivative at a training example. More details about this algorithm are included in the
supplementary material, together with the algorithm we use for training MPSR≥0

, which is a variation
of the one given above for LPS. MPSR≥0

could also be trained using the expectation-maximization
(EM) algorithm, but as BM and LPS use real or complex tensors, different algorithms are required.
Note that in all these models not only the likelihood can be evaluated efficiently: marginals and
correlation functions can be computed in a time linear in the number of variables, while exact samples
from the distribution can also be generated efficiently [55, 34].

Instead of approximating a distribution from samples, it might also be useful to compress a probability
mass function P given in the form of a non-negative tensor. Since the original probability mass
function has a number of parameters that is exponential in N , this is only possible for a small number
of variables. It can be done by minimizing the Kullback–Leibler (KL) divergence D(P ||T/ZT ) =∑
X1,...,XN

PX1,...,XN
log
(

PX1,...,XN

TX1,...,XN
/ZT

)
, where T is represented by a tensor-network model. The

gradient of the KL-divergence can be obtained in the same way as the gradient of the log-likelihood
and gradient-based optimization algorithms can then be used to solve this optimization problem. Note
that for the case of matrices and MPSR≥0 more specific algorithms have been developed [56], and
finding more efficient algorithms for factorizing a given tensor in the form of a BM or LPS represents
an interesting problem that we leave for future work.

6 Numerical experiments

Using the algorithms discussed in Section 5 we numerically investigate the extent to which the sepa-
rations found in Section 4 apply in both the setting of approximating a distribution from samples, and
the setting of compressing given non-negative tensors. Code, data sets and choice of hyperparameters
are available in the supplementary material and the provided repository [57].

6.1 Random tensor factorizations

We first generate random probability mass functions P by generating a tensor with elements chosen
uniformly in [0, 1] and normalizing it. We then minimize the KL-divergence D(P ||T/ZT ), where T
is the tensor defined by an MPS, BM or LPS with given rank r. We choose LPS to have a purification
dimension of 2. Details of the optimization are available in the supplementary material.

Figure 3: Mean of the minimum error of the approximation of 50 random tensors P with tensor
networks of fixed rank, as a function of the rank or the number of (real) parameters. Left: 20× 20
matrix. Right: tensor over 8 binary variables. The errors bars represent one standard deviation, and
are omitted below 10−12.

Results are presented in Fig. 3 for a 20× 20 matrix and a tensor with 8 binary variables. They show
that complex BM as well as real and complex LPS generically provide a better approximation to a
tensor than an MPS or real BM, for fixed rank as well as for fixed number of real parameters.
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6.2 Maximum likelihood estimation on realistic data sets

We now investigate how well the different tensor-network representations are able to learn from
realistic data sets. We train MPSR≥0

, BMR, BMC, LPSR and LPSC (of purification dimension 2) using
the algorithm of Section 5 on different data sets of categorical variables. Since we are interested in the
expressive power of the different representations we use the complete data sets and no regularization.
Additional results on generalization performance are included in the supplementary material.

Figure 4: Maximum likelihood estimation with tensor networks, HMM and a Bayesian network
without hidden units with graph learned from the data on different data sets: a) biofam data set
of family life states from the Swiss Household Panel biographical survey [58]; data sets from the
UCI Machine Learning Repository [59]: b) Lymphography [60], c) SPECT Heart, d) Congressional
Voting Records, e) Primary Tumor [60], f) Solar Flare.

The results in Fig. 4 show the best negative log-likelihood per sample obtained for each tensor
network of fixed rank. As a comparison we also include the best negative log-likelihood obtained
from an HMM trained using the Baum-Welch algorithm [61, 62], as well as the best possible Bayesian
network without hidden variables, where the network graph is learned from the data [62]. We observe
that despite the different algorithm choice, the performance of HMM and MPSR≥0

are similar, as we
could expect from their relationship. On all data sets, BM and LPS lead to significant improvements
for the same rank over MPSR≥0

.

7 Conclusion

We have characterized the expressive power of various tensor-network models of probability distri-
butions, in the process enhancing the scope and applicability of the tensor-network toolbox within
the broader context of learning algorithms. In particular, our analysis has concrete implications
for model selection, suggesting that in generic settings LPS should be preferred over both hidden
Markov models and Born machines. Furthermore, our results prove that unexpectedly the use of
complex tensors over real tensors can lead to an unbounded expressive advantage in particular network
architectures. Additionally, this work contributes to the growing body of rigorous results concerning
the expressive power of learning models, which have been obtained via tensor-network techniques. A
formal understanding of the expressive power of state-of-the-art learning models is often elusive; it is
hoped that both the techniques and spirit of this work can be used to add momentum to this program.
Finally, through the formal relationship of LPS and Born machines to quantum circuits, our work
provides a concrete foundation for both the development and analysis of quantum machine learning
algorithms for near-term quantum devices.
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