
Reviewer 2: Regarding comments on parameter γ > 0: Firstly, the condition γ ∈ (0, 0.5) is a sufficient condition for1

the bound in Theorem 1 to hold, which follows from the proof (see eq. (15)). Secondly, if γ is increased, the bound2

tightens but on the other hand the probabilistic guarantee weakens. However, for a given data set one can readily search3

for the γ in (0, 0.5) which yields the most informative (tightest) interval Λα(x). In the revised paper, we will elaborate4

on these points and amend the wording of ‘tuning-free’.5

Regarding comments on Fig. 1: The spatial domain in this example is in fact discretized into R = 50 regions whose6

resulting small size only make the curves appear continuous. The revised paper clarifies this.7

Regarding comments related to the risk R(θ): First, note that in eq. (5) the risk can also be writtten as R(θ) =8

−n−1Ey|r[ln pθ(y|r)] + K, where the constant K = n−1Ey|r[ln p(y|r)] is there only to ensure nonnegativity9

R(θ) ≥ 0 and the natural property R(θ) = 0 ⇔ pθ(y|r) ≡ p(y|r). Thus including K in the definition of risk is10

natural and it requires no knowledge of p(y|r) in order to define the unknown θ? in eq. (6) as it does not affect the11

optimization problem. Secondly, since ln p(y|r) =
∑n
i=1 ln p(yi|ri) and ln pθ(y|r) =

∑n
i=1 ln pθ(yi|ri) are a sum12

of n terms and division by n in eq. (5) is merely a natural normalization to make derivation and final expressions neater.13

The riskR(θ) is therefore the Kullback-Leibler divergence per sample. We will clarify this is the revised manuscript.14

Regarding comments related to empirical coverage: Let Λα(x) and Λ
′

α(x) denote the prediction intervals for the15

proposed regularized approach (in eq. (7)) and the standard likelihood approach, respectively. In Section 4.1, we16

conduct a small but illustrative simulation study in which both intervals are computed using the conformal prediction17

framework (Algorithm 1). Both intervals have empirical coverages that are valid, that is, exceed 1− α = 80%. The18

difference between the intervals lies in their sizes as shown in Fig. 2c, where Λα(x) is found to be much smaller than19

Λ
′

α(x) for the same coverage. In the interest of more details, we will include additional simulations in the supplementary20

material that evaluate the empirical coverages of the two intervals under different scenarios.21

Regarding comments related to notational issues: r has now been added in union in line 44. The intensity function λ(x)22

is defined as the number of events per unit area. This has now been clarified on line 44. Capital Y is the maximum23

number of events in a region and only plays the role of a practical upper limit on the conformal prediction interval so as24

to terminate the for-loop in Algorithm 1. Given that it is set reasonably high for the problem at hand, it does not affect25

the results and in practice we simply set it to an integer multiple of the maximum number of counts observed in any26

region. Details regarding φ(r) have now been added on lines 89− 90. In Algorithm 2, ‘repeat’ has now been replaced27

by ‘while’ and the convergence criteria specified. Other notational issues have also been addressed and will appear in28

the revised paper.29

Reviewer 3: Regarding comments on utility of the method in extrapolation scenarios: Unless a method is based on30

some plausible physical model of the point process, one cannot expect it to yield valid and informative intervals far31

from the observed data. Indeed the proposed method yields valid intervals but they become increasingly uninformative32

for regions further from the observed data. By contrast, the standard kernel density-based methods (e.g. [6]) may33

wrongly infer the absence of events outside data as zero intensity in this case, whereas the credible intervals obtained34

from Bayesian method become less informative but do not exhibit any statistical validity (see Fig. 2b). Hence proposed35

method yields intervals that reflect uncertainity due to missing data in a statistically appropriate way (see Fig. 2a and36

2b).37

Regarding comments on the balance of the terms in the fitting criterion in eq. (7): Note that −n−1 ln pθ(y|r) = −38

n−1
∑n
i=1 ln pθ(yi|ri) is a sum of n terms therefore it will not decay as the number of datapoints n increase. On39

the other hand, the second regularization term will decay with n, as desired. Thus the fitting criterion in eq. (7) is40

appropriately balanced.41

Regarding comments on comparison with other methods: In the literature, the Cox process is the default model and42

state-of-the-art methods are based using log-Gaussian link function (LGCP in Section 4.1). Given the intractibility43

of this model, most work is centered on computational approximations ([9], [13], [20], [2]). In this work, we have44

compared our method with the popular integrated Laplace approximation (INLA [17], [11]). Less tractable Monte45

Carlo approximations, e.g. [9], [2] were not implemented in this study.46

Regarding comments on the computational complexity of the proposed method: Algorithm 2 solves a series of weighted47

lasso problems and can therefore be solved in a runtime that scales as O(nR2) where n is the number of datapoints and48

R is the dimension of θ. This has been clarified in the revised paper.49

Reviewer 4: Regarding comments related to effect of discretization: the manner in which space is discretized will affect50

the size of intervals but not their statistical validity. That is, irrespective of how space is discretized, the out-of-sample51

guarantees eqs. (3) and (8) will still hold, whether the resulting model is misspecified or not. We will elaborate on the52

effect of spatial discretization in the revised paper.53


