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Abstract

In this paper we propose a novel method for learning a Mahalanobis
distance measure to be used in the KNN classification algorithm. The
algorithm directly maximizes a stochastic variant of the leave-one-out
KNN score on the training set. It can also learn a low-dimensional lin-
ear embedding of labeled data that can be used for data visualization
and fast classification. Unlike other methods, our classification model
is non-parametric, making no assumptions about the shape of the class
distributions or the boundaries between them. The performance of the
method is demonstrated on several data sets, both for metric learning and
linear dimensionality reduction.

1 Introduction

Nearest neighbor (KNN) is an extremely simple yet surprisingly effective method for clas-
sification. Its appeal stems from the fact that its decision surfaces are nonlinear, there
is only a single integer parameter (which is easily tuned with cross-validation), and the
expected quality of predictions improves automatically as the amount of training data in-
creases. These advantages, shared by many non-parametric methods, reflect the fact that
although the final classification machine has quite high capacity (since it accesses the entire
reservoir of training data at test time), the trivial learning procedure rarely causes overfitting
itself.

However, KNN suffers from two very serious drawbacks. The first is computational, since
it must store and search through the entire training set in order to classify a single test point.
(Storage can potentially be reduced by “editing” or “thinning” the training data; and in low
dimensional input spaces, the search problem can be mitigated by employing data structures
such as KD-trees or ball-trees[4].) The second is a modeling issue: how should the distance
metric used to define the “nearest” neighbours of a test point be defined? In this paper, we
attack both of these difficulties by learning a quadratic distance metric which optimizes the
expected leave-one-out classification error on the training data when used with a stochastic
neighbour selection rule. Furthermore, we can force the learned distance metric to be low
rank, thus substantially reducing storage and search costs at test time.

2 Stochastic Nearest Neighbours for Distance Metric Learning

We begin with a labeled data set consisting ofn real-valued input vectorsx1, . . . , xn in RD

and corresponding class labelsc1, ..., cn. We want to find a distance metric that maximizes



the performance of nearest neighbour classification. Ideally, we would like to optimize
performance on future test data, but since we do not know the true data distribution we
instead attempt to optimize leave-one-out (LOO) performance on the training data.

In what follows, we restrict ourselves to learning Mahalanobis (quadratic) distance metrics,
which can always be represented by symmetric positive semi-definite matrices. We esti-
mate such metrics through their inverse square roots, by learning alinear transformation
of the input space such that in the transformed space, KNN performs well. If we denote
the transformation by a matrixA we are effectively learning a metricQ = A>A such that
d(x, y) = (x − y)>Q(x − y) = (Ax − Ay)>(Ax − Ay).

The actual leave-one-out classification error of KNN is quite a discontinuous function of the
transformationA, since an infinitesimal change inA may change the neighbour graph and
thus affect LOO classification performance by a finite amount. Instead, we adopt a more
well behaved measure of nearest neighbour performance, by introducing a differentiable
cost function based on stochastic (“soft”) neighbour assignments in the transformed space.
In particular, each pointi selects another pointj as its neighbour with some probabilitypij ,
and inherits its class label from the point it selects. We define thepij using a softmax over
Euclidean distances in the transformed space:

pij =
exp(−‖Axi − Axj‖

2)
∑

k 6=i exp(−‖Axi − Axk‖2)
, pii = 0 (1)

Under this stochastic selection rule, we can compute the probabilitypi that pointi will be
correctly classified (denote the set of points in the same class asi by Ci = {j|ci = cj}):

pi =
∑

j∈Ci

pij (2)

The objective we maximize is theexpected number of points correctly classifiedunder this
scheme:

f(A) =
∑

i

∑

j∈Ci

pij =
∑

i

pi (3)

Differentiatingf with respect to the transformation matrixA yields a gradient rule which
we can use for learning (denotexij = xi − xj):

∂f

∂A
= −2A

∑

i
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pij(xijx
>
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k

pikxikx>

ik) (4)

Reordering the terms we obtain a more efficiently computed expression:

∂f
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= 2A
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 (5)

Our algorithm – which we dub Neighbourhood Components Analysis (NCA)– is extremely
simple: maximize the above objective (3) using a gradient based optimizer such as delta-
bar-delta or conjugate gradients. Of course, since the cost function above is not convex,
some care must be taken to avoid local maxima during training. However, unlike many
other objective functions (where good optima are not necessarily deep but rather broad) it
has been our experience that the larger we can drivef during training the better our test
performance will be. In other words, we have never observed an “overtraining” effect.

Notice that by learning the overall scale ofA as well as the relative directions of its rows
we are also effectively learning a real-valued estimate of the optimal number of neighbours
(K). This estimate appears as the effective perplexity of the distributionspij . If the learning



procedure wants to reduce the effective perplexity (consult fewer neighbours) it can scale
upA uniformly; similarly by scaling down all the entries inA it can increase the perplexity
of and effectively average over more neighbours during the stochastic selection.

Maximizing the objective functionf(A) is equivalent to minimizing theL1 norm between
the true class distribution (having probability one on the true class) and the stochastic class
distribution induced bypij viaA. A natural alternative distance is the KL-divergence which
induces the following objective function:

g(A) =
∑

i

log(
∑

j∈Ci

pij) =
∑

i

log(pi) (6)

Maximizing this objective would correspond to maximizing the probability of obtaining a
perfect (error free) classification of the entire training set. The gradient ofg(A) is even
simpler than that off(A):
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(7)

We have experimented with optimizing this cost function as well, and found both the trans-
formations learned and the performance results on training and testing data to be very
similar to those obtained with the original cost function.

To speed up the gradient computation, the sums that appear in equations (5) and (7) over
the data points and over the neigbours of each point, can be truncated (one because we
can do stochastic gradient rather than exact gradient and the other becausepij drops off
quickly).

3 Low Rank Distance Metrics and Nonsquare Projection

Often it is useful to reduce the dimensionality of input data, either for computational sav-
ings or for regularization of a subsequent learning algorithm. Linear dimensionality re-
duction techniques (which apply a linear operator to the original data in order to arrive
at the reduced representation) are popular because they are both fast and themselves rela-
tively immune to overfitting. Because they implement only affine maps, linear projections
also preserve some essential topology of the original data. Many approaches exist for lin-
ear dimensionality reduction, ranging from purely unsupervised approaches (such as factor
analysis, principal components analysis and independent components analysis) to methods
which make use of class labels in addition to input features such as linear discriminant
analysis (LDA)[3] possibly combined with relevant components analysis (RCA)[1].

By restrictingA to be a nonsquare matrix of sized×D, NCA can also do linear dimension-
ality reduction. In this case, the learned metric will be low rank, and the transformed inputs
will lie in Rd. (Since the transformation is linear, without loss of generality we only con-
sider the cased ≤ D. ) By making such a restriction, we can potentially reap many further
benefits beyond the already convenient method for learning a KNN distance metric. In par-
ticular, by choosingd � D we can vastly reduce the storage and search-time requirements
of KNN. Selectingd = 2 or d = 3 we can also compute useful low dimensional visual-
izations on labeled datasets, using only a linear projection. The algorithm is exactly the
same: optimize the cost function (3) using gradient descent on a nonsquareA. Our method
requires no matrix inversions and assumes no parametric model (Gaussian or otherwise)
for the class distributions or the boundaries between them. For now, the dimensionality of
the reduced representation (the number of rows inA) must be set by the user.

By using an highly rectangularA so thatd � D, we can significantly reduce the com-
putational load of KNN at the expense of restricting the allowable metrics to be those of



rank at mostd. To achieve this, we apply the NCA learning algorithm to find the optimal
transformationA, and then we store only the projections of the training pointsyn = Axn

(as well as their labels). At test time, we classify a new pointxtest by first computing its
projectionytest = Axtest and then doing KNN classification onytest using theyn and
a simple Euclidean metric. Ifd is relatively small (say less than 10), we can preprocess
the yn by building a KD-tree or a ball-tree to further increase the speed of search at test
time. The storage requirements of this method areO(dN) + Dd compared withO(DN)
for KNN in the original input space.

4 Experiments in Metric Learning and Dimensionality Reduction

We have evaluated the NCA algorithm against standard distance metrics for KNN and other
methods for linear dimensionality reduction. In our experiments, we have used 6 data sets
(5 from the UC Irvine repository). We compared the NCA transformation obtained from
optimizingf (for squareA) on the training set with the default Euclidean distanceA = I,
the “whitening” transformation ,A = Σ− 1

2 (whereΣ is the sample data covariance matrix),

and the RCA [1] transformationA = Σ
− 1

2

w (whereΣw is the average of the within-class
covariance matrices). We also investigated the behaviour of NCA whenA is restricted to
be diagonal, allowing only axis aligned Mahalanobis measures.

Figure 1 shows that the training and (more importantly) testing performance of NCA is
consistently the same as or better than that of other Mahalanobis distance measures for
KNN, despite the relative simplicity of the NCA objective function and the fact that the
distance metric being learned is nothing more than a positive definite matrixA>A.

We have also investigated the use of linear dimensionality reduction using NCA (with non-
squareA) for visualization as well as reduced-complexity classification on several datasets.
In figure 2 we show 4 examples of 2-D visualization. First, we generated a synthetic three-
dimensional dataset (shown in top row of figure 2) which consists of 5 classes (shown by
different colors). In two dimensions, the classes are distributed in concentric circles, while
the third dimension is just Gaussian noise, uncorrelated with the other dimensions or the
class label. If the noise variance is large enough, the projection found by PCA is forced
to include the noise (as shown on the top left of figure 2). (A full rank Euclidean metric
would also be misled by this dimension.) The classes are not convex and cannot be lin-
early separated, hence the results obtained from LDA will be inappropriate (as shown in
figure 2). In contrast, NCA adaptively finds the best projection without assuming any para-
metric structure in the low dimensional representation. We have also applied NCA to the
UCI “wine” dataset, which consists of 178 points labeled into 3 classes and to a database
of gray-scale images of faces consisting of 18 classes (each a separate individual) and 560
dimensions (image size is20×28). The face dataset consists of 1800 images (100 for each
person). Finally, we applied our algorithm to a subset of the USPS dataset of handwritten
digit images, consisting of the first five digit classes (“one” through “five”). The grayscale
images were downsampled to8 × 8 pixel resolution resulting in 64 dimensions.

As can be seen in figure 2 when a two-dimensional projection is used, the classes are con-
sistently much better separated by the NCA transformation than by either PCA (which is
unsupervised) or LDA (which has access to the class labels). Of course, the NCA transfor-
mation is still only a linear projection, just optimized with a cost function which explicitly
encourages local separation. To further quantify the projection results we can apply a
nearest-neighbor classification in the projected space. Using the same projection learned
at training time, we project the training set and all future test points and perform KNN in
the low-dimensional space using the Euclidean measure. The results under the PCA, LDA,
LDA followed by RCA and NCA transformations (using K=1) appear in figure 1. The
NCA projection consistently gives superior performance in this highly constrained low-
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Figure 1: KNN classification accuracy (left train, right test) on UCI datasets balance, iono-
sphere, iris, wine and housing and on the USPS handwritten digits. Results are averages
over 40 realizations of splitting each dataset into training (70%) and testing (30%) subsets
(for USPS 200 images for each of the 10 digit classes were used for training and 500 for
testing). Top panels show distance metric learning (squareA) and bottom panels show
linear dimensionality reduction down tod = 2.

rank KNN setting. In summary, we have found that when labeled data is available, NCA
performs better both in terms of classification performance in the projected representation
and in terms of visualization of class separation as compared to the standard methods of
PCA and LDA.

5 Extensions to Continuous Labels and Semi-Supervised Learning

Although we have focused here on discrete classes, linear transformations and fully su-
pervised learning, many extensions of this basic idea are possible. Clearly, a nonlinear
transformation functionA(·) could be learned using any architecture (such as a multilayer
perceptron) trainable by gradient methods. Furthermore, it is possible to extend the clas-
sification framework presented above to the case of a real valued (continuous) supervision
signal by defining the set of “correct matches”Ci for point i to be those pointsj having
similar (continuous) targets. This naturally leads to the idea of “soft matches”, in which
the objective function becomes a sum over all pairs, each weighted by their agreement ac-
cording to the targets. Learning under such an objective can still proceed even in settings
where the targets are not explicitly provided as long as information identifying close pairs
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Figure 2: Dataset visualization results of PCA, LDA and NCA applied to (from top) the
“concentric rings”, “wine”, “faces” and “digits” datasets. The data are reduced from their
original dimensionalities (D=3,D=13,D=560,D=256 respectively) to the d=2 dimensions
show.



Figure 3:The two dimensional outputs of the neural network on a set of test cases. On the left, each
point is shown using a line segment that has the same orientation as the input face. On the right, the
same points are shown again with the size of the circle representing the size of the face.

is available. Such semi-supervised tasks often arise in domains with strong spatial or tem-
poral continuity constraints on the supervision, e.g. in a video of a person’s face we may
assume that pose, and expression vary slowly in time even if no individual frames are ever
labeled explicitly with numerical pose or expression values.

To illustrate this, we generate pairs of faces in the following way: First we choose two faces
at random from the FERET-B dataset (5000 isolated faces that have a standard orientation
and scale). The first face is rotated by an angle uniformly distributed between±45o and
scaled to have a height uniformly distributed between 25 and 35 pixels. The second face
(which is of a different person) is given the same rotation and scaling but with Gaussian
noise of±1.22o and±1.5 pixels. The pair is given a weight,wab, which is the probability
density of the added noise divided by its maximum possible value. We then trained a neural
network with one hidden layer of 100 logistic units to map from the35×35 pixel intensities
of a face to a point,y, in a 2-D output space. Backpropagation was used to minimize the
cost function in Eq. 8 which encourages the faces in a pair to be placed close together:

Cost = −
∑

pair(a,b)

wab log

(

exp(−||ya − yb||
2)

∑

c,d exp(−||yc − yd||2)

)

(8)

wherec andd are indices over all of the faces, not just the ones
that form a pair. Four example faces are shown to the right; hori-
zontally the pairs agree and vertically they do not. Figure 3 above
shows that the feedforward neural network discovered polar coor-
dinates without the user having to decide how to represent scale
and orientation in the output space.

6 Relationships to Other Methods and Conclusions

Several papers recently addressed the problem of learning Mahalanobis distance functions
given labeled data or at least side-information of the form of equivalence constraints. Two
related methods are RCA [1] and a convex optimization based algorithm [7]. RCA is
implicitly assuming a Gaussian distribution for each class (so it can be described using
only the first two moments of the class-conditional distribution). Xing et. al attempt to
find a transformation which minimizes all pairwise squared distances between points in the



same class; this implicitly assumes that classes form a single compact connected set. For
highly multimodal class distributions this cost function will be severely penalized. Lowe[6]
proposed a method similar to ours but used a more limited idea for learning a nearest
neighbour distance metric. In his approach, the metric is constrained to be diagonal (as
well, it is somewhat redundantly parameterized), and the objective function corresponds to
the averagesquared errorbetween the true class distribution and the predicted distribution,
which is not entirely appropriate in a more probabilistic setting.

In parallel there has been work on learning low rank transformations for fast classification
and visualization. The classic LDA algorithm[3] is optimal if all class distributions are
Gaussian with a single shared covariance; this assumption, however is rarely true. LDA
also suffers from a small sample size problem when dealing with high-dimensional data
when the within-class scatter matrix is nearly singular[2]. Recent variants of LDA (e.g.
[5], [2]) make the transformation more robust to outliers and to numerical instability when
not enough datapoints are available. (This problem does not exist in our method since there
is no need for a matrix inversion.)

In general, there are two classes of regularization assumption that are common in linear
methods for classification. The first is a strong parametric assumption about the structure of
the class distributions (typically enforcing connected or even convex structure); the second
is an assumption about the decision boundary (typically enforcing a hyperplane). Our
method makes neither of these assumptions, relying instead on the strong regularization
imposed by restricting ourselves to a linear transformation of the original inputs.

Future research on the NCA model will investigate using local estimates ofK as derived
from the entropy of the distributionspij ; the possible use of a stochastic classification rule
at test time; and more systematic comparisons between the objective functionsf andg.

To conclude, we have introduced a novel non-parametric learning method — NCA — that
handles the tasks of distance learning and dimensionality reduction in a unified manner.
Although much recent effort has focused on non-linear methods, we feel that linear em-
bedding has still not fully fulfilled its potential for either visualization or learning.
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