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Abstract

The computation and memory required for kernel machines with N train-
ing samples is at least O(N2). Such a complexity is significant even for
moderate size problems and is prohibitive for large datasets. We present
an approximation technique based on the improved fast Gauss transform
to reduce the computation to O(N). We also give an error bound for the
approximation, and provide experimental results on the UCI datasets.

1 Introduction

Kernel based methods, including support vector machines [16], regularization networks [5]
and Gaussian processes [18], have attracted much attention in machine learning. The solid
theoretical foundations and good practical performance of kernel methods make them very
popular. However one major drawback of the kernel methods is their scalability. Ker-
nel methods require O(N2) storage and O(N3) operations for direct methods, or O(N 2)
operations per iteration for iterative methods, which is impractical for large datasets.

To deal with this scalability problem, many approaches have been proposed, including the
Nyström method [19], sparse greedy approximation [13, 12], low rank kernel approxima-
tion [3] and reduced support vector machines [9]. All these try to find a reduced subset
of the original dataset using either random selection or greedy approximation. In these
methods there is no guarantee on the approximation of the kernel matrix in a deterministic
sense. An assumption made in these methods is that most eigenvalues of the kernel matrix
are zero. This is not always true and its violation results in either performance degradation
or negligible reduction in computational time or memory.

We explore a deterministic method to speed up kernel machines using the improved fast
Gauss transform (IFGT) [20, 21]. The kernel machine is solved iteratively using the conju-
gate gradient method, where the dominant computation is the matrix-vector product which
we accelerate using the IFGT. Rather than approximating the kernel matrix by a low-rank
representation, we approximate the matrix-vector product by the improved fast Gauss trans-
form to any desired precision. The total computational and storage costs are of linear order
in the size of the dataset. We present the application of the IFGT to kernel methods in
the context of the Regularized Least-Squares Classification (RLSC) [11, 10], though the
approach is general and can be extended to other kernel methods.

2 Regularized Least-Squares Classification

The RLSC algorithm [11, 10] solves the binary classification problems in Reproducing
Kernel Hilbert Space (RKHS) [17]: given N training samples in d-dimensional space xi ∈



Rd and the labels yi ∈ {−1, 1}, find f ∈ H that minimizes the regularized risk functional

min
f∈H

1

N

N
∑

i=1

V (yi, f(xi)) + λ‖f‖2
K , (1)

where H is an RKHS with reproducing kernel K, V is a convex cost function and λ is
the regularization parameter controlling the tradeoff between the cost and the smoothness.
Based on the Representer Theorem [17], the solution has a representation as

fλ(x) =

N
∑

i=1

ciK(x,xi). (2)

If the loss function V is the hinge function, V (y, f) = (1 − yf)+, where (τ)+ = τ for
τ > 0 and 0 otherwise, then the minimization of (1) leads to the popular Support Vector
Machines which can be solved using quadratic programming.

If the loss function V is the square-loss function, V (y, f) = (y − f)2, the minimization
of (1) leads to the so-called Regularized Least-Squares Classification which requires only
the solution of a linear system. The algorithm has been rediscovered several times and
has many different names [11, 10, 4, 15]. In this paper, we stick to the term “RLSC” for
consistency. It has been shown in [11, 4] that RLSC achieves accuracy comparable to the
popular SVMs for binary classification problems.

If we substitute (2) into (1), and denote c = [c1, . . . , cN ]T , K = K(xi,xj), we can find
the solution of (1) by solving the linear system

(K + λ′I)c = y (3)

where λ′ = λN , I is the identity matrix, and y = [y1, . . . , yN ]T .

There are many choices for the kernel function K. The Gaussian is a good kernel for classi-
fication and is used in many applications. If a Gaussian kernel is applied, as shown in [10],
the classification problem can be solved by the solution of a linear system, i.e., Regularized
Least-Squares Classification. A direct solution of the linear system will require O(N 3)
computation and O(N2) storage, which is impractical even for problems of moderate size.

Algorithm 1 Regularized Least-Squares Classification

Require: Training dataset SN = (xi, yi)
N
i=1.

1. Choose the Gaussian kernel: K(x,x′) = e−‖x−x
′‖2/σ2

.
2. Find the solution as f(x) =

∑N
i=1 ciK(x,xi), where c satisfies the linear system (3).

3. Solve the linear system (3).

An effective way to solve the large-scale linear system (3) is to use iterative methods.
Since the matrix K is symmetric, we consider the well-known conjugate gradient method.
The conjugate gradient method solves the linear system (3) by iteratively performing the
matrix-vector multiplication Kc. If rank(K) = r, then the conjugate gradient algorithm
converges in at most r+1 steps. Only one matrix-vector multiplication and 10N arithmetic
operations are required per iteration. Only four N -vectors are required for storage. So the
computational complexity is O(N 2) for low-rank K and the storage requirement is O(N 2).
While this represents an improvement for most problems, the rank of the matrix may not
be small, and moreover the quadratic storage and computational complexity are still too
high for large datasets. In the following sections, we present an algorithm to reduce the
computational and storage complexity to linear order.



3 Fast Gauss Transform

The matrix-vector product Kc can be written in the form of the so-called discrete Gauss
transform [8]

G(yj) =
N

∑

i=1

cie
−‖xi−yj‖

2/σ2

, (4)

where ci are the weight coefficients, {xi}
N
i=1 are the centers of the Gaussians (called

“sources”), and σ is the bandwidth parameter of the Gaussians. The sum of the Gaus-
sians is evaluated at each of the “target” points {yj}

M
j=1. Direct evaluation of the Gauss

transform at M target points due to N sources requires O(MN) operations.

The Fast Gauss Transform (FGT) was invented by Greengard and Strain [8] for efficient
evaluation of the Gauss transform in O(M + N) operations. It is an important variant of
the more general Fast Multipole Method [7].

The FGT [8] expands the Gaussian function into Hermite functions. The expansion of the
univariate Gaussian is

e−‖yj−xi‖
2/σ2

=

p−1
∑

n=0

1

n!

(

xi − x∗

σ

)n

hn

(

yj − x∗

σ

)

+ ε(p), (5)

where hn(x) are the Hermite functions defined by hn(x) = (−1)n dn

dxn

(

e−x2

)

, and x∗

is the expansion center. The d-dimensional Gaussian function is treated as a Kronecker
product of d univariate Gaussians. For simplicity, we adopt the multi-index notation of
the original FGT papers [8]. A multi-index α = (α1, . . . , αd) is a d-tuple of nonnegative
integers. For any multi-index α ∈ Nd and any x ∈ Rd, we have the monomial xα =
xα1

1 xα2

2 · · ·xαd

d . The length and the factorial of α are defined as |α| = α1 + α2 + . . . + αd,
α! = α1!α2! · · ·αd!. The multidimensional Hermite functions are defined by

hα(x) = hα1
(x1)hα2

(x2) · · ·hαd
(xd).

The sum (4) is then equal to the Hermite expansion about center x∗:

G(yj) =
∑

α≥0

Cαhα

(

yj − x∗

h

)

, Cα =
1

α!

N
∑

i=1

ci

(

xi − x∗

h

)α

. (6)

where Cα are the coefficients of the Hermite expansions.

If we truncate each of the Hermite series (6) after p terms (or equivalently order p − 1),
then each of the coefficients Cα is a d-dimensional matrix with pd terms. The total compu-
tational complexity for a single Hermite expansion is O((M + N)pd). The factor O(pd)
grows exponentially as the dimensionality d increases. Despite this defect in higher di-
mensions, the FGT is quite effective for two and three-dimensional problems, and has
achieved success in some physics, computer vision and pattern recognition applications.

In practice a single expansion about one center is not always valid or accurate over the en-
tire domain. A space subdivision scheme is applied in the FGT and the Gaussian functions
are expanded at multiple centers. The original FGT subdivides space into uniform boxes,
which is simple, but highly inefficient in higher dimensions. The number of boxes grows
exponentially with dimensionality, which makes it inefficient for storage and for searching
nonempty neighbor boxes. Most important, since the ratio of volume of the hypercube to
that of the inscribed sphere grows exponentially with dimension, points have a high prob-
ability of falling into the area inside the box and outside the sphere, where the truncation
error of the Hermite expansion is much larger than inside of the sphere.



3.1 Improved Fast Gauss Transform

In brief, the original FGT suffers from the following two defects:

1. The exponential growth of computationally complexity with dimensionality.
2. The use of the box data structure in the FGT is inefficient in higher dimensions.

We introduced the improved FGT [20, 21] to address these deficiencies, and it is summa-
rized below.

3.1.1 Multivariate Taylor Expansions
Instead of expanding the Gaussian into Hermite functions, we factorize it as

e−‖yj−xi‖
2/σ2

= e−‖∆yj‖
2/σ2

e−‖∆xi‖
2/σ2

e2∆yj ·∆xi/σ2

, (7)

where x∗ is the center of the sources, ∆yj = yj − x∗,∆xi = xi − x∗. The first two
exponential terms can be evaluated individually at the source points or target points. In the
third term, the sources and the targets are entangled. Here we break the entanglement by
expanding it into a multivariate Taylor series

e2∆yj ·∆xi/σ2

=

∞
∑

n=0

2n

(

∆xi

σ
·
∆yj

σ

)n

=
∑

|α|≥0

2|α|

α!

(

∆xi

σ

)α (

∆yj

σ

)α

. (8)

If we truncate the series after total order p − 1, then the number of terms is rp−1,d =
(

p+d−1
d

)

which is much less than pd in higher dimensions. For d = 12 and p = 10, the
original FGT needs 1012 terms, while the multivariate Taylor expansion needs only 293930.
For d → ∞ and moderate p, the number of terms is O(dp), a substantial reduction.

From Eqs.(7) and (8), the weighted sum of Gaussians (4) can be expressed as a multivariate
Taylor expansions about center x∗:

G(yj) =
∑

|α|≥0

Cαe−‖yj−x∗‖
2/σ2

(

yj − x∗

σ

)α

, (9)

where the coefficients Cα are given by

Cα =
2|α|

α!

N
∑

i=1

cie
−‖xi−x∗‖

2/σ2

(

xi − x∗

σ

)α

. (10)

The coefficients Cα can be efficiently evaluate with rnd storage and rnd−1 multiplications
using the multivariate Horner’s rule [20].

3.1.2 Spatial Data Structures
To efficiently subdivide the space, we need a scheme that adaptively subdivides the space
according to the distribution of points. It is also desirable to generate cells as compact as
possible. Based on these consideration, we model the space subdivision task as a k-center
problem [1]: given a set of N points and a predefined number of clusters k, find a partition
of the points into clusters S1, . . . , Sk, with cluster centers c1, . . . , ck, that minimizes the
maximum radius of any cluster:

max
i

max
v∈Si

‖v − ci‖.

The k-center problem is known to be NP -hard. Gonzalez [6] proposed a very simple
greedy algorithm, called farthest-point clustering. Initially, pick an arbitrary point v0 as
the center of the first cluster and add it to the center set C. Then, for i = 1 to k do
the follows: in iteration i, for every point, compute its distance to the set C: di(v, C) =
minc∈C ‖v − c‖. Let vi be a point that is farthest away from C, i.e., a point for which
di(vi, C) = maxv di(v, C). Add vi to the center set C. After k iterations, report the points
v0, v1, . . . , vk−1 as the cluster centers. Each point is then assigned to its nearest center.



Gonzalez [6] proved that farthest-point clustering is a 2-approximation algorithm, i.e., it
computes a partition with maximum radius at most twice the optimum. The direct imple-
mentation of farthest-point clustering has running time O(Nk). Feder and Greene [2] give
a two-phase algorithm with optimal running time O(N log k). In practice, we used circular
lists to index the points and achieve the complexity O(N log k) empirically.

3.1.3 The Algorithm and Error Bound
The improved fast Gauss transform consists of the following steps:

Algorithm 2 Improved Fast Gauss Transform

1. Assign N sources into k clusters using the farthest-point clustering algorithm such
that the radius is less than σρx.
2. Choose p sufficiently large such that the error estimate (11) is less than the desired
precision ε.
3. For each cluster Sk with center ck, compute the coefficients given by (10).
4. Repeat for each target yj , find its neighbor clusters whose centers lie within the range
σρy . Then the sum of Gaussians (4) can be evaluated by the expression (9).

The amount of work required in step 1 is O(N log k) using Feder and Greene’s algo-
rithm [2]. The amount of work required in step 3 is of O(N rpd). The work required
in step 4 is O(Mn rpd), where n ≤ k is the maximum number of neighbor clusters for
each target. So, the improved fast Gauss transform achieves linear running time. The algo-
rithm needs to store the k coefficients of size rpd, so the storage complexity is reduced to
O(Krpd). To verify the linear order of our algorithm, we generate N source points and N
target points in 4, 6, 8, 10 dimensional unit hypercubes using a uniform distribution. The
weights on the source points are generated from a uniform distribution in the interval [0, 1]
and σ = 1. The results of the IFGT and the direct evaluation are displayed in Figure 1(a),
(b), and confirm the linear order of the IFGT.

The error of the improved fast Gauss transform (2) is bounded by

|E(G(yj))| ≤
N

∑

i=1

|ci|

(

2p

p!
ρp

xρp
y + e−(ρy−ρx)2

)

. (11)

The details are in [21]. The comparison between the maximum absolute errors in the
simulation and the estimated error bound (11) is displayed in Figure 1(c) and (d). It shows
that the error bound is very conservative compared with the real errors. Empirically we can
obtain the parameters on a randomly selected subset and use them on the entire dataset.

4 IFGT Accelerated RLSC: Discussion and Experiments
The key idea of all acceleration methods is to reduce the cost of the matrix-vector product.
In reduced subset methods, this is performed by evaluating the product at a few points,
assuming that the matrix is low rank. The general Fast Multipole Methods (FMM) seek to
analytically approximate the possibly full-rank matrix as a sum of low rank approximations
with a tight error bound [14] (The FGT is a variant of the FMM with Gaussian kernel). It is
expected that these methods can be more robust, while at the same time achieve significant
acceleration.

The problems to which kernel methods are usually applied are in higher dimensions, though
the intrinsic dimensionality of the data is expected to be much smaller. The original FGT
does not scale well to higher dimensions. Its cost is of linear order in the number of sam-
ples, but exponential order in the number of dimensions. The improved FGT uses new data
structures and a modified expansion to reduce this to polynomial order.

Despite this improvement, at first glance, even with the use of the IFGT, it is not clear if the
reduction in complexity will be competitive with the other approaches proposed. Reason
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Figure 1: (a) Running time and (b) maximum absolute error w.r.t. N in d = 4, 6, 8, 10. The
comparison between the real maximum absolute errors and the estimated error bound (11) w.r.t. (c)
the order of the Taylor series p, and (d) the radius of the farthest-point clustering algorithm rx = σρx.
The uniformly distributed sources and target points are in 4-dimension.

for hope is provided by the fact that in high dimensions we expect that the IFGT with very
low order expansions will converge rapidly (because of the sharply vanishing exponential
terms multiplying the expansion in factorization (7). Thus we expect that combined with a
dimensionality reduction technique, we can achieve very competitive solutions.

In this paper we explore the application of the IFGT accelerated RLSC to certain standard
problems that have already been solved by the other techniques. While dimensionality
reduction would be desirable, here we do not perform such a reduction for fair comparison.
We use small order expansions (p = 1 and p = 2) in the IFGT and run the iterative solver.

In the first experiment, we compared the performance of the IFGT on approximating the
sums (4) with the Nyström method [19]. The experiments were carried out on a Pentium
4 1.4GHz PC with 512MB memory. We generate N source points and N target points in
100 dimensional unit hypercubes using a uniform distribution. The weights on the source
points are generated using a uniform distribution in the interval [0, 1]. We directly evaluate
the sums (4) as the ground truth, where σ2 = (0.5)d and d is the dimensionality of the
data. Then we estimate it using the improved fast Gauss transform and Nyström method.
To compare the results, we use the maximum relative error to measure the precision of the
approximations. Given a precision of 0.5%, we use the error bound (11) to find the para-
meters of the IFGT, and use a trial and error method to find the parameter of the Nyström
method. Then we vary the number of points, N , from 500 to 5000 and plot the time against
N in Figure 2 (a). The results show the IFGT is much faster than the Nyström method. We
also fix the number of points to N = 1000 and vary the size of centers (or random subset)
k from 10 to 1000 and plot the results in Figure 2 (b). The results show that the errors of
the IFGT are not sensitive to the number of the centers, which means we can use very a
small number of centers to achieve a good approximation. The accuracy of the Nyström



method catches up at large k, where the direct evaluation may be even faster. The intuition
is that the use of expansions improves the accuracy of the approximation and relaxes the
requirement of the centers.
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Figure 2: Performance comparison between the approximation methods. (a) Running time against
N and (b) maximum relative error against k for fixed N = 1000 in 100 dimensions.

Table 1: Ten-fold training and testing accuracy in percentage and training time in seconds using the
four classifiers on the five UCI datasets. Same value of σ2 = (0.5)d is used in all the classifiers. A
rectangular kernel matrix with random subset size of 20% of N was used in PSVM on Galaxy Dim
and Mushroom datasets.

Dataset RLSC+FGT RLSC Nyström PSVM
Size × Dimension %, %, s %, %, s %, %, s %, %, s

Ionosphere 94.8400 97.7209 91.8656 95.1250
251 × 34 91.7302 90.6032 88.8889 94.0079

0.3711 1.1673 0.4096 0.8862
BUPA Liver 79.6789 81.7318 76.7488 75.8134

345 × 6 71.0336 67.8403 69.2857 71.4874
0.1279 0.4833 0.1475 0.3468

Tic-Tac-Toe 88.7263 88.6917 88.4945 92.9715
958 × 9 86.9507 85.4890 84.1272 87.2680

0.3476 2.9676 1.8326 3.9891
Galaxy Dim 93.2967 93.3206 93.7023 93.6705
4192 × 14 93.2014 93.2258 93.7020 93.5589

2.0972 78.3526 3.1081 44.5143
Mushroom 88.2556 87.9001 85.5955
8124 × 22 87.9615 87.6658 failed 85.4629

14.7422 341.7148 285.1126

In the second experiment, five datasets from the UCI repository are used to compare the
performance of four different methods for classification: RLSC with the IFGT, RLSC with
full kernel evaluation, RLSC with the Nyström method and the Proximal Support Vector
Machines (PSVM) [4]. The Gaussian kernel is used for all these methods. We use the
same value of σ2 = (0.5)d for a fair comparison. The ten-fold cross validation accuracy
on training and testing and the training time are listed in Table 1. The RLSC with the
IFGT is fastest among the four classifiers on all five datasets, while the training and testing
accuracy is close to the accuracy of the RLSC with full kernel evaluation. The RLSC
with the Nyström approximation is nearly as fast, but the accuracy is lower than the other
methods. Worst of all, it is not always feasible to solve the linear systems, which results in
the failure on the Mushroom dataset. The PSVM is accurate on the training and testing, but
slow and memory demanding for large datasets, even with subset reduction.



5 Conclusions and Discussion
We presented an improved fast Gauss transform to speed up kernel machines with Gaussian
kernel to linear order. The simulations and the classification experiments show that the
algorithm is in general faster and more accurate than other matrix approximation methods.
At present, we do not consider the reduction from the support vector set or dimensionality
reduction. The combination of the improved fast Gauss transform with these techniques
should bring even more reduction in computation. Another improvement to the algorithm
is an automatic procedure to tune the parameters. A possible solution could be running a
series of testing problems and tuning the parameters accordingly. If the bandwidth is very
small compared with the data range, the nearest neighbor searching algorithms could be a
better solution to these problems.
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